James Pavur (Oxford University), Martin Strohmeier (armasuisse), Vincent Lenders (armasuisse), Ivan Martinovic (Oxford University)

Satellite broadband services are critical infrastructures, bringing connectivity to the most remote regions of the globe. However, due to performance concerns, many geostationary satellite broadband services are unencrypted by default and vulnerable to long-range eavesdropping attacks. The result is that deeply sensitive internet traffic is regularly broadcast in clear-text over vast coverage areas.

This paper delves into the underlying causes of this insecure network design, presenting the case that physical characteristics effecting TCP performance and the widespread use of Performance Enhancing Proxies (PEPs) have created the perception of a security/performance trade-off in these networks. A review of previous mitigation attempts finds limited real-world adoption due to a variety of factors ranging from misaligned commercial incentives to the prevalence of unverified ``black-box'' encryption products.

To address these shortcomings, we design and implement a fully open-source and encrypted-by-default PEP/VPN hybrid, call QPEP. Built around the QUIC standard, QPEP enables individuals to encrypt satellite traffic without ISP involvement. Additionally, we present an open and replicable Docker-based testbed for benchmarking satellite PEPs like QPEP through simulation. These experiments show that QPEP enables satellite customers to encrypt their TCP traffic with up to 65% faster page load times (PLTs) compared to traditional VPN encryption. Even relative to unencrypted PEPs, QPEP offers up to 45% faster PLTs while adding over-the-air security. We briefly evaluate additional tweaks to QUIC which may further optimize QPEP performance. Together, these assessments suggest that QPEP represents a promising new technique for bringing both security and performance to high-latency satellite broadband without requiring alterations to status-quo network implementations.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 47 ) ) ) [post__not_in] => Array ( [0] => 6908 ) )

Sn4ke: Practical Mutation Analysis of Tests at Binary Level

Mohsen Ahmadi (Arizona State University), Pantea Kiaei (Worcester Polytechnic Institute), Navid Emamdoost (University of Minnesota)

Read More

Improving Signal's Sealed Sender

Ian Martiny (University of Colorado Boulder), Gabriel Kaptchuk (Boston University), Adam Aviv (The George Washington University), Dan Roche (U.S. Naval Avademy), Eric Wustrow (University of Colorado Boulder)

Read More

SymQEMU: Compilation-based symbolic execution for binaries

Sebastian Poeplau (EURECOM and Code Intelligence), Aurélien Francillon (EURECOM)

Read More

Demo #9: Attacking Multi-Sensor Fusion based Localization in High-Level...

Junjie Shen, Jun Yeon Won, Zeyuan Chen and Qi Alfred Chen (UC Irvine)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)