Matteo Marini (Sapienza University of Rome), Daniele Cono D'Elia (Sapienza University of Rome), Mathias Payer (EPFL), Leonardo Querzoni (Sapienza University of Rome)

Fuzzing evolved into the most popular technique to detect bugs in software. Its combination with sanitizers has shown tremendous efficacy in uncovering memory safety errors, such as buffer overflows, that haunt C and C++ programmers. However, an important class of such issues, the so-called use-of-uninitialized-memory (UUM) errors, struggles to gain similar benefits from fuzzing endeavors. The only fuzzer-compatible UUM sanitizer available to date, MSan, requires that all libraries are fully instrumented. Unlike address sanitization, for which partial instrumentation results in false negatives (missed detection of bugs), UUM sanitizers require complete instrumentation to avoid false positives, hampering testing at scale. Yet, full-stack compiler-based instrumentation can be a daunting prospect for compatibility and practicality. As a result, many programs are left untested for UUM bugs.

In this paper, we propose an efficient multi-layer, opportunistic design that does not require (source-based) recompilation of all code without harming accuracy. The multiplicity of executions when fuzzing offers us the opportunity to learn what any encountered false positive looks like, and later ignore them when we meet them again with new test cases. Such an avenue is feasible only if one can resort to fast techniques to effectively discriminate candidate errors, or false negatives will then occur.

We show how to realize this design by using the dynamic binary translation of QEMU for compatibility and lightweight code analysis techniques to achieve scalability and accuracy. As a result, we obtain a fuzzer-friendly, performant sanitizer, QMSan, that effectively tackles current practicality challenges of UUM error detection. On a collection of 10 open-source and 5 proprietary programs, QMSan exposed 44 new UUM bugs. In our tests, QMSan incurs slowdowns of 1.51x over QEMU and 1.55x over the compiler-based instrumentation of MSan, showing no false positives and false negatives. QMSan is open-source.

View More Papers

Deanonymizing Device Identities via Side-channel Attacks in Exclusive-use IoTs...

Christopher Ellis (The Ohio State University), Yue Zhang (Drexel University), Mohit Kumar Jangid (The Ohio State University), Shixuan Zhao (The Ohio State University), Zhiqiang Lin (The Ohio State University)

Read More

Scale-MIA: A Scalable Model Inversion Attack against Secure Federated...

Shanghao Shi (Virginia Tech), Ning Wang (University of South Florida), Yang Xiao (University of Kentucky), Chaoyu Zhang (Virginia Tech), Yi Shi (Virginia Tech), Y. Thomas Hou (Virginia Polytechnic Institute and State University), Wenjing Lou (Virginia Polytechnic Institute and State University)

Read More

Work-in-Progress: Detecting Browser-in-the-Browser Attacks from Their Behaviors and DOM...

Ryusei Ishikawa, Soramichi Akiyama, and Tetsutaro Uehara (Ritsumeikan University)

Read More

TME-Box: Scalable In-Process Isolation through Intel TME-MK Memory Encryption

Martin Unterguggenberger (Graz University of Technology), Lukas Lamster (Graz University of Technology), David Schrammel (Graz University of Technology), Martin Schwarzl (Cloudflare, Inc.), Stefan Mangard (Graz University of Technology)

Read More