Matteo Marini (Sapienza University of Rome), Daniele Cono D'Elia (Sapienza University of Rome), Mathias Payer (EPFL), Leonardo Querzoni (Sapienza University of Rome)

Fuzzing evolved into the most popular technique to detect bugs in software. Its combination with sanitizers has shown tremendous efficacy in uncovering memory safety errors, such as buffer overflows, that haunt C and C++ programmers. However, an important class of such issues, the so-called use-of-uninitialized-memory (UUM) errors, struggles to gain similar benefits from fuzzing endeavors. The only fuzzer-compatible UUM sanitizer available to date, MSan, requires that all libraries are fully instrumented. Unlike address sanitization, for which partial instrumentation results in false negatives (missed detection of bugs), UUM sanitizers require complete instrumentation to avoid false positives, hampering testing at scale. Yet, full-stack compiler-based instrumentation can be a daunting prospect for compatibility and practicality. As a result, many programs are left untested for UUM bugs.

In this paper, we propose an efficient multi-layer, opportunistic design that does not require (source-based) recompilation of all code without harming accuracy. The multiplicity of executions when fuzzing offers us the opportunity to learn what any encountered false positive looks like, and later ignore them when we meet them again with new test cases. Such an avenue is feasible only if one can resort to fast techniques to effectively discriminate candidate errors, or false negatives will then occur.

We show how to realize this design by using the dynamic binary translation of QEMU for compatibility and lightweight code analysis techniques to achieve scalability and accuracy. As a result, we obtain a fuzzer-friendly, performant sanitizer, QMSan, that effectively tackles current practicality challenges of UUM error detection. On a collection of 10 open-source and 5 proprietary programs, QMSan exposed 44 new UUM bugs. In our tests, QMSan incurs slowdowns of 1.51x over QEMU and 1.55x over the compiler-based instrumentation of MSan, showing no false positives and false negatives. QMSan is open-source.

View More Papers

User Comprehension and Comfort with Eye-Tracking and Hand-Tracking Permissions...

Kaiming Cheng (University of Washington), Mattea Sim (Indiana University), Tadayoshi Kohno (University of Washington), Franziska Roesner (University of Washington)

Read More

”Who is Trying to Access My Account?” Exploring User...

Tongxin Wei (Nankai University), Ding Wang (Nankai University), Yutong Li (Nankai University), Yuehuan Wang (Nankai University)

Read More

Automatic Insecurity: Exploring Email Auto-configuration in the Wild

Shushang Wen (School of Cyber Science and Technology, University of Science and Technology of China), Yiming Zhang (Tsinghua University), Yuxiang Shen (School of Cyber Science and Technology, University of Science and Technology of China), Bingyu Li (School of Cyber Science and Technology, Beihang University), Haixin Duan (Tsinghua University; Zhongguancun Laboratory), Jingqiang Lin (School of Cyber…

Read More

A Key-Driven Framework for Identity-Preserving Face Anonymization

Miaomiao Wang (Shanghai University), Guang Hua (Singapore Institute of Technology), Sheng Li (Fudan University), Guorui Feng (Shanghai University)

Read More