Jens Müller (Ruhr University Bochum), Dominik Noss (Ruhr University Bochum), Christian Mainka (Ruhr University Bochum), Vladislav Mladenov (Ruhr University Bochum), Jörg Schwenk (Ruhr University Bochum)

PDF is the de-facto standard for document exchange. It is common to open PDF files from potentially untrusted sources such as email attachments or downloaded from the Internet. In this work, we perform an in-depth analysis of the capabilities of malicious PDF documents. Instead of focusing on implementation bugs, we abuse legitimate features of the PDF standard itself by systematically identifying dangerous paths in the PDF file structure. These dangerous paths lead to attacks that we categorize into four generic classes: (1) Denial-of-Service attacks affecting the host that processes the document. (2) Information disclosure attacks leaking personal data out of the victim’s computer. (3) Data manipulation on the victim’s system. (4) Code execution on the victim’s machine. An evaluation of 28 popular PDF processing applications shows that 26 of them are vulnerable at least one attack. Finally, we propose a methodology to protect against attacks based on PDF features systematically.

View More Papers

KUBO: Precise and Scalable Detection of User-triggerable Undefined Behavior...

Changming Liu (Northeastern University), Yaohui Chen (Facebook Inc.), Long Lu (Northeastern University)

Read More

Dinosaur Resurrection: PowerPC Binary Patching for Base Station Analysis

Uwe Muller, Eicke Hauck, Timm Welz, Jiska Classen, Matthias Hollick (Secure Mobile Networking Lab, TU Darmstadt)

Read More

Screen Gleaning: Receiving and Interpreting Pixels by Eavesdropping on...

Zhuoran Liu, Léo Weissbart, Dirk Lauret (Radboud University)

Read More

WeepingCAN: A Stealthy CAN Bus-off Attack

Gedare Bloom (University of Colorado Colorado Springs) Best Paper Award Winner ($300 cash prize)!

Read More