Victor Perrier (Data61, CSIRO and ISAE-SUPAERO), Hassan Jameel Asghar (Macquarie University and Data61, CSIRO), Dali Kaafar (Macquarie University and Data61, CSIRO)

We present a differentially private mechanism to display statistics (e.g., the moving average) of a stream of real valued observations where the bound on each observation is either too conservative or unknown in advance. This is particularly relevant to scenarios of real-time data monitoring and reporting, e.g., energy data through smart meters. Our focus is on real-world data streams whose distribution is light-tailed, meaning that the tail approaches zero at least as fast as the exponential distribution. For such data streams, individual observations are expected to be concentrated below an unknown threshold. Estimating this threshold from the data can potentially violate privacy as it would reveal particular events tied to individuals. On the other hand an overly conservative threshold may impact accuracy by adding more noise than necessary. We construct a utility optimizing differentially private mechanism to release this threshold based on the input stream. Our main advantage over the state-of-the-art algorithms is that the resulting noise added to each observation of the stream is scaled to the threshold instead of a possibly much larger bound; resulting in considerable gain in utility when the difference is significant. Using two real-world datasets, we demonstrate that our mechanism, on average, improves the utility by a factor of 3.5 on the first dataset, and 9 on the other. While our main focus is on continual release of statistics, our mechanism for releasing the threshold can be used in various other applications where a (privacy-preserving) measure of the scale of the input distribution is required.

View More Papers

Tranco: A Research-Oriented Top Sites Ranking Hardened Against Manipulation

Victor Le Pochat (imec-DistriNet, KU Leuven), Tom Van Goethem (imec-DistriNet, KU Leuven), Samaneh Tajalizadehkhoob (Delft University of Technology), Maciej Korczyński (Grenoble Alps University), Wouter Joosen (imec-DistriNet, KU Leuven)

Read More

Constructing an Adversary Solver for Equihash

Xiaofei Bai (School of Computer Science, Fudan University), Jian Gao (School of Computer Science, Fudan University), Chenglong Hu (School of Computer Science, Fudan University), Liang Zhang (School of Computer Science, Fudan University)

Read More

On the Challenges of Geographical Avoidance for Tor

Katharina Kohls (Ruhr-University Bochum), Kai Jansen (Ruhr-University Bochum), David Rupprecht (Ruhr-University Bochum), Thorsten Holz (Ruhr-University Bochum), Christina Pöpper (New York University Abu Dhabi)

Read More

The Crux of Voice (In)Security: A Brain Study of...

Ajaya Neupane (University of California Riverside), Nitesh Saxena (University of Alabama at Birmingham), Leanne Hirshfield (Syracuse University), Sarah Elaine Bratt (Syracuse University)

Read More