Sebastian Zimmeck (Wesleyan University), Rafael Goldstein (Wesleyan University), David Baraka (Wesleyan University)

Various privacy laws require mobile apps to have privacy policies. Questionnaire-based policy generators are intended to help developers with the task of policy creation. However, generated policies depend on the generators' designs as well as developers' abilities to correctly answer privacy questions on their apps. In this study we show that policies generated with popular policy generators are often not reflective of apps' privacy practices. We believe that policy generation can be improved by supplementing the questionnaire-based approach with code analysis. We design and implement PrivacyFlash Pro, a privacy policy generator for iOS apps that leverages static analysis. PrivacyFlash Pro identifies code signatures --- composed of Plist permission strings, framework imports, class instantiations, authorization methods, and other evidence --- that are mapped to privacy practices expressed in privacy policies. Resources from package managers are used to identify libraries.

We tested PrivacyFlash Pro in a usability study with 40 iOS app developers and received promising results both in terms of reliably identifying apps' privacy practices as well as on its usability. We measured an F-1 score of 0.95 for identifying permission uses. 24 of 40 developers rated PrivacyFlash Pro with at least 9 points on a scale of 0 to 10 for a Net Promoter Score of 42.5. The mean System Usability Score of 83.4 is close to excellent. We provide PrivacyFlash Pro as an open source project to the iOS developer community. In principle, our approach is platform-agnostic and adaptable to the Android and web platforms as well. To increase privacy transparency and reduce compliance issues we make the case for privacy policies as software development artifacts. Privacy policy creation should become a native extension of the software development process and adhere to the mental model of software developers.

View More Papers

Доверя́й, но проверя́й: SFI safety for native-compiled Wasm

Evan Johnson (University of California San Diego), David Thien (University of California San Diego), Yousef Alhessi (University of California San Diego), Shravan Narayan (University Of California San Diego), Fraser Brown (Stanford University), Sorin Lerner (University of California San Diego), Tyler McMullen (Fastly Labs), Stefan Savage (University of California San Diego), Deian Stefan (University of California…

Read More

Improving Signal's Sealed Sender

Ian Martiny (University of Colorado Boulder), Gabriel Kaptchuk (Boston University), Adam Aviv (The George Washington University), Dan Roche (U.S. Naval Avademy), Eric Wustrow (University of Colorado Boulder)

Read More

Demo #4: Attacking Tesla Model X’s Autopilot Using Compromised...

Ben Nassi (Ben-Gurion University of the Negev), Yisroel Mirsky (Ben-Gurion University of the Negev, Georgia Tech), Dudi Nassi, Raz Ben Netanel (Ben-Gurion University of the Negev), Oleg Drokin (Independent Researcher), and Yuval Elovici (Ben-Gurion University of the Negev) Best Demo Award Winner ($300 cash prize)!

Read More

RandRunner: Distributed Randomness from Trapdoor VDFs with Strong Uniqueness

Philipp Schindler (SBA Research), Aljosha Judmayer (SBA Research), Markus Hittmeir (SBA Research), Nicholas Stifter (SBA Research, TU Wien), Edgar Weippl (Universität Wien)

Read More