Aydin Abadi (Newcastle University), Vishnu Asutosh Dasu (Pennsylvania State University), Sumanta Sarkar (University of Warwick)

Deduplication is a vital preprocessing step that enhances machine learning model performance and saves training time and energy. However, enhancing federated learning through deduplication poses challenges, especially regarding scalability and potential privacy violations if deduplication involves sharing all clients' data. In this paper, we address the problem of deduplication in a federated setup by introducing a pioneering protocol, Efficient Privacy-Preserving Multi-Party Deduplication (EP-MPD). It efficiently removes duplicates from multiple clients' datasets without compromising data privacy. EP-MPD is constructed in a modular fashion, utilizing two novel variants of the Private Set Intersection protocol. Our extensive experiments demonstrate the significant benefits of deduplication in federated learning of large language models. For instance, we observe up to 19.62% improvement in perplexity and up to 27.95% reduction in running time while varying the duplication level between 10% and 30%. EP-MPD effectively balances privacy and performance in federated learning, making it a valuable solution for large-scale applications.

View More Papers

MTZK: Testing and Exploring Bugs in Zero-Knowledge (ZK) Compilers

Dongwei Xiao (The Hong Kong University of Science and Technology), Zhibo Liu (The Hong Kong University of Science and Technology), Yiteng Peng (The Hong Kong University of Science and Technology), Shuai Wang (The Hong Kong University of Science and Technology)

Read More

MALintent: Coverage Guided Intent Fuzzing Framework for Android

Ammar Askar (Georgia Institute of Technology), Fabian Fleischer (Georgia Institute of Technology), Christopher Kruegel (University of California, Santa Barbara), Giovanni Vigna (University of California, Santa Barbara), Taesoo Kim (Georgia Institute of Technology)

Read More

Wallbleed: A Memory Disclosure Vulnerability in the Great Firewall...

Shencha Fan (GFW Report), Jackson Sippe (University of Colorado Boulder), Sakamoto San (Shinonome Lab), Jade Sheffey (UMass Amherst), David Fifield (None), Amir Houmansadr (UMass Amherst), Elson Wedwards (None), Eric Wustrow (University of Colorado Boulder)

Read More

I Know What You Asked: Prompt Leakage via KV-Cache...

Guanlong Wu (Southern University of Science and Technology), Zheng Zhang (ByteDance Inc.), Yao Zhang (ByteDance Inc.), Weili Wang (Southern University of Science and Technolog), Jianyu Niu (Southern University of Science and Technolog), Ye Wu (ByteDance Inc.), Yinqian Zhang (Southern University of Science and Technology (SUSTech))

Read More