Min Zheng (Orion Security Lab, Alibaba Group), Xiaolong Bai (Orion Security Lab, Alibaba Group), Yajin Zhou (Zhejiang University), Chao Zhang (Institute for Network Science and Cyberspace, Tsinghua University), Fuping Qu (Orion Security Lab, Alibaba Group)

Apple devices (e.g., iPhone, MacBook, iPad, and Apple Watch) are high value targets for attackers. Although these devices use different operating systems (e.g., iOS, macOS, iPadOS, watchOS, and tvOS), they are all based on a hybrid kernel called XNU. Existing attacks demonstrated that vulnerabilities in XNU could be exploited to escalate privileges and jailbreak devices. To mitigate these threats, multiple security mechanisms have been deployed in latest systems.

In this paper, we first perform a systematic assessment of deployed mitigations by Apple, and demonstrate that most of them can be bypassed through corrupting a special type of kernel objects, i.e., Mach port objects. We summarize this type of attack as (Mach) Port Object-Oriented Programming (POP). Accordingly, we define multiple attack primitives to launch the attack and demonstrate realistic scenarios to achieve full memory manipulation on recently released systems (i.e., iOS 13 and macOS 10.15). To defend against POP, we propose the Port Ultra-SHield (PUSH) system to reduce the number of unprotected Mach port objects. Specifically, PUSH automatically locates potential POP primitives and instruments related system calls to enforce the integrity of Mach port kernel objects. It does not require system modifications and only introduces 2% runtime overhead. The PUSH framework has been deployed on more than 40,000 macOS devices in a leading company. The evaluation of 18 public exploits and one zero-day exploit detected by our system demonstrated the effectiveness of PUSH. We believe that the proposed framework will facilitate the design and implementation of a more secure XNU kernel.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 47 ) ) ) [post__not_in] => Array ( [0] => 6893 ) )

CROW: Code Diversification for WebAssembly

Javier Cabrera Arteaga, Orestis Floros, Benoit Baudry, Martin Monperrus (KTH Royal Institute of Technology), Oscar Vera Perez (Univ Rennes, Inria, CNRS, IRISA)

Read More

Effects of Precise and Imprecise Value-Set Analysis (VSA) Information...

Laura Matzen, Michelle A Leger, Geoffrey Reedy (Sandia National Laboratories)

Read More

Hashomer – Privacy-Preserving Bluetooth Based Contact Tracing Scheme for...

Benny Pinkas (Bar-Ilan University); Eyal Ronen (Tel Aviv University)

Read More

Preventing and Detecting State Inference Attacks on Android

Andrea Possemato (IDEMIA and EURECOM), Dario Nisi (EURECOM), Yanick Fratantonio (EURECOM and Cisco Talos)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)