Hugo Kermabon-Bobinnec (Concordia University), Yosr Jarraya (Ericsson Security Research), Lingyu Wang (Concordia University), Suryadipta Majumdar (Concordia University), Makan Pourzandi (Ericsson Security Research)

Known, but unpatched vulnerabilities represent one of the most concerning threats for businesses today. The average time-to-patch of zero-day vulnerabilities remains around 100 days in recent years. The lack of means to mitigate an unpatched vulnerability may force businesses to temporarily shut down their services, which can lead to significant financial loss. Existing solutions for filtering system calls unused by a container can effectively reduce the general attack surface, but cannot prevent a specific vulnerability that shares the same system calls with the container. On the other hand, existing provenance analysis solutions can help identify a sequence of system calls behind the vulnerability, although they do not provide a direct solution for filtering such a sequence. To bridge such a research gap, we propose Phoenix, a solution for preventing exploits of unpatched vulnerabilities by accurately and efficiently filtering sequences of system calls identified through provenance analysis. To achieve this, Phoenix cleverly combines the efficiency of Seccomp filters with the accuracy of Ptrace-based deep argument inspection, and it provides the novel capability of filtering system call sequences through a dynamic Seccomp design. Our implementation and experiments show that Phoenix can effectively mitigate real-world vulnerabilities which evade existing solutions, while introducing negligible delay (less than 4%) and less overhead (e.g., 98% less CPU consumption than existing solution).

View More Papers

Inaudible Adversarial Perturbation: Manipulating the Recognition of User Speech...

Xinfeng Li (Zhejiang University), Chen Yan (Zhejiang University), Xuancun Lu (Zhejiang University), Zihan Zeng (Zhejiang University), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University)

Read More

Low-Quality Training Data Only? A Robust Framework for Detecting...

Yuqi Qing (Tsinghua University), Qilei Yin (Zhongguancun Laboratory), Xinhao Deng (Tsinghua University), Yihao Chen (Tsinghua University), Zhuotao Liu (Tsinghua University), Kun Sun (George Mason University), Ke Xu (Tsinghua University), Jia Zhang (Tsinghua University), Qi Li (Tsinghua University)

Read More

Acoustic Keystroke Leakage on Smart Televisions

Tejas Kannan (University of Chicago), Synthia Qia Wang (University of Chicago), Max Sunog (University of Chicago), Abraham Bueno de Mesquita (University of Chicago Laboratory Schools), Nick Feamster (University of Chicago), Henry Hoffmann (University of Chicago)

Read More

WIP: An Adaptive High Frequency Removal Attack to Bypass...

Yuki Hayakawa (Keio University), Takami Sato (University of California, Irvine), Ryo Suzuki, Kazuma Ikeda, Ozora Sako, Rokuto Nagata (Keio University), Qi Alfred Chen (University of California, Irvine), Kentaro Yoshioka (Keio University)

Read More