Qinhan Tan (Zhejiang University), Zhihua Zeng (Zhejiang University), Kai Bu (Zhejiang University), Kui Ren (Zhejiang University)

Cache conflicts due to deterministic memory-to-cache mapping have long been exploited to leak sensitive information such as secret keys. While randomized mapping is fully investigated for L1 caches, it still remains unresolved about how to secure a much larger last-level cache (LLC). Recent solutions periodically change the mapping strategy to disrupt the crafting of conflicted addresses, which is a critical attack procedure to exploit cache conflicts. Remapping, however, increases both miss rate and access latency. We present PhantomCache for securing an LLC with remapping-free randomized mapping. We propose a localized randomization technique to bound randomized mapping of a memory address within only a limited number of cache sets. The small randomization space offers fast set search over an LLC in a memory access. The intrinsic randomness still suffices to obfuscate conflicts and disrupt efficient exploitation of conflicted addresses. We evaluate PhantomCache against an attacker exploring the state-of-the-art attack with linear-complexity. To secure an 8-bank 16~MB 16-way LLC, PhantomCache confines randomization space of an address within 8 sets and brings only 0.5% performance degradation and 0.5% storage overhead per cache line, which are 3x and 9x more efficient than the state-of-the-art solutions. Moreover, PhantomCache is solely an architectural solution and requires no software change.

View More Papers

RandRunner: Distributed Randomness from Trapdoor VDFs with Strong Uniqueness

Philipp Schindler (SBA Research), Aljosha Judmayer (SBA Research), Markus Hittmeir (SBA Research), Nicholas Stifter (SBA Research, TU Wien), Edgar Weippl (Universität Wien)

Read More

Learning-based Practical Smartphone Eavesdropping with Built-in Accelerometer

Zhongjie Ba (Zhejiang University and McGill University), Tianhang Zheng (University of Toronto), Xinyu Zhang (Zhejiang University), Zhan Qin (Zhejiang University), Baochun Li (University of Toronto), Xue Liu (McGill University), Kui Ren (Zhejiang University)

Read More

Demo #3: Detecting Illicit Drone Video Filming Using Cryptanalysis

Ben Nassi, Raz Ben-Netanel (Ben-Gurion University of the Negev), Adi Shamir (Weizmann Institute of Science), and Yuval Elovic (Ben-Gurion University of the Negev)

Read More

Genotype Extraction and False Relative Attacks: Security Risks to...

Peter Ney (University of Washington), Luis Ceze (University of Washington), Tadayoshi Kohno (University of Washington)

Read More