Xuanqi Liu (Tsinghua University), Zhuotao Liu (Tsinghua University), Qi Li (Tsinghua University), Ke Xu (Tsinghua University), Mingwei Xu (Tsinghua University)

The escalating focus on data privacy poses significant challenges for collaborative neural network training, where data ownership and model training/deployment responsibilities reside with distinct entities. Our community has made substantial contributions to addressing this challenge, proposing various approaches such as federated learning (FL) and privacy-preserving machine learning based on cryptographic constructs like homomorphic encryption (HE) and secure multiparty computation (MPC). However, FL completely overlooks model privacy, and HE has limited extensibility (confined to only one data provider). While the state-of-the-art MPC frameworks provide reasonable throughput and simultaneously ensure model/data privacy, they rely on a critical non-colluding assumption on the computing servers, and relaxing this assumption is still an open problem.

In this paper, we present Pencil, the first private training framework for collaborative learning that simultaneously offers data privacy, model privacy, and extensibility to multiple data providers, without relying on the non-colluding assumption. Our fundamental design principle is to construct the n-party collaborative training protocol based on an efficient two-party protocol, and meanwhile ensuring that switching to different data providers during model training introduces no extra cost. We introduce several novel cryptographic protocols to realize this design principle and conduct a rigorous security and privacy analysis. Our comprehensive evaluations of Pencil demonstrate that (i) models trained in plaintext and models trained privately using Pencil exhibit nearly identical test accuracies; (ii) The training overhead of Pencil is greatly reduced: Pencil achieves 10 ∼ 260× higher throughput and 2 orders of magnitude less communication than prior art; (iii) Pencil is resilient against both existing and adaptive (white-box) attacks.

View More Papers

PrintListener: Uncovering the Vulnerability of Fingerprint Authentication via the...

Man Zhou (Huazhong University of Science and Technology), Shuao Su (Huazhong University of Science and Technology), Qian Wang (Wuhan University), Qi Li (Tsinghua University), Yuting Zhou (Huazhong University of Science and Technology), Xiaojing Ma (Huazhong University of Science and Technology), Zhengxiong Li (University of Colorado Denver)

Read More

Heterogeneous Graph Pre-training Based Model for Secure and Efficient...

Xurui Li (Fudan University), Xin Shan (Bank of Shanghai), Wenhao Yin (Shanghai Saic Finance Co., Ltd)

Read More

WIP: A Trust Assessment Method for In-Vehicular Networks using...

Artur Hermann, Natasa Trkulja (Ulm University - Institute of Distributed Systems), Anderson Ramon Ferraz de Lucena, Alexander Kiening (DENSO AUTOMOTIVE Deutschland GmbH), Ana Petrovska (Huawei Technologies), Frank Kargl (Ulm University - Institute of Distributed Systems)

Read More

Connecting the Dots in the Sky: Website Fingerprinting in...

Prabhjot Singh (University of Waterloo), Diogo Barradas (University of Waterloo), Tariq Elahi (University of Edinburgh), Noura Limam (University of Waterloo)

Read More