Adithya Bhat (Purdue University), Nibesh Shrestha (Rochester Institute of Technology), Aniket Kate (Purdue University), Kartik Nayak (Duke University)

Public random beacons publish random numbers at regular intervals, which anyone can obtain and verify. The design of public distributed random beacons has been an exciting research direction with significant implications for blockchains, voting, and beyond. Distributed random beacons, in addition to being bias-resistant and unpredictable, also need to have low communication overhead and latency, high resilience to faults, and ease of reconfigurability. Existing synchronous random beacon protocols sacrifice one or more of these properties.

In this work, we design an efficient unpredictable synchronous random beacon protocol, OptRand, with quadratic (in the number $n$ of system nodes) communication complexity per beacon output. First, we innovate by employing a novel combination of bilinear pairing based publicly verifiable secret-sharing and non-interactive zero-knowledge proofs to build a linear (in $n$) sized publicly verifiable random sharing. Second, we develop a state machine replication protocol with linear-sized inputs that is also optimistically responsive, i.e., it can progress responsively at actual network speed during optimistic conditions, despite the synchrony assumption, and thus incur low latency. In addition, we present an efficient reconfiguration mechanism for OptRand that allows nodes to leave and join the system. Our experiments show our protocols perform significantly better compared to state-of-the-art protocols under optimistic conditions and on par with state-of-the-art protocols in the normal case. We are also the first to implement a reconfiguration mechanism for distributed beacons and demonstrate that our protocol continues to be live during reconfigurations.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 66 ) ) ) [post__not_in] => Array ( [0] => 13238 ) )

Fusion: Efficient and Secure Inference Resilient to Malicious Servers

Caiqin Dong (Jinan University), Jian Weng (Jinan University), Jia-Nan Liu (Jinan University), Yue Zhang (Jinan University), Yao Tong (Guangzhou Fongwell Data Limited Company), Anjia Yang (Jinan University), Yudan Cheng (Jinan University), Shun Hu (Jinan University)

Read More

RAI2: Responsible Identity Audit Governing the Artificial Intelligence

Tian Dong (Shanghai Jiao Tong University), Shaofeng Li (Shanghai Jiao Tong University), Guoxing Chen (Shanghai Jiao Tong University), Minhui Xue (CSIRO's Data61), Haojin Zhu (Shanghai Jiao Tong University), Zhen Liu (Shanghai Jiao Tong University)

Read More

DiffCSP: Finding Browser Bugs in Content Security Policy Enforcement...

Seongil Wi (KAIST), Trung Tin Nguyen (CISPA Helmholtz Center for Information Security, Saarland University), Jihwan Kim (KAIST), Ben Stock (CISPA Helmholtz Center for Information Security), Sooel Son (KAIST)

Read More

WIP: Practical Removal Attacks on LiDAR-based Object Detection in...

Takami Sato (University of California, Irvine), Yuki Hayakawa (Keio University), Ryo Suzuki (Keio University), Yohsuke Shiiki (Keio University), Kentaro Yoshioka (Keio University), Qi Alfred Chen (University of California, Irvine)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)