Adithya Bhat (Purdue University), Nibesh Shrestha (Rochester Institute of Technology), Aniket Kate (Purdue University), Kartik Nayak (Duke University)

Public random beacons publish random numbers at regular intervals, which anyone can obtain and verify. The design of public distributed random beacons has been an exciting research direction with significant implications for blockchains, voting, and beyond. Distributed random beacons, in addition to being bias-resistant and unpredictable, also need to have low communication overhead and latency, high resilience to faults, and ease of reconfigurability. Existing synchronous random beacon protocols sacrifice one or more of these properties.

In this work, we design an efficient unpredictable synchronous random beacon protocol, OptRand, with quadratic (in the number $n$ of system nodes) communication complexity per beacon output. First, we innovate by employing a novel combination of bilinear pairing based publicly verifiable secret-sharing and non-interactive zero-knowledge proofs to build a linear (in $n$) sized publicly verifiable random sharing. Second, we develop a state machine replication protocol with linear-sized inputs that is also optimistically responsive, i.e., it can progress responsively at actual network speed during optimistic conditions, despite the synchrony assumption, and thus incur low latency. In addition, we present an efficient reconfiguration mechanism for OptRand that allows nodes to leave and join the system. Our experiments show our protocols perform significantly better compared to state-of-the-art protocols under optimistic conditions and on par with state-of-the-art protocols in the normal case. We are also the first to implement a reconfiguration mechanism for distributed beacons and demonstrate that our protocol continues to be live during reconfigurations.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 66 ) ) ) [post__not_in] => Array ( [0] => 13238 ) )

SoundLock: A Novel User Authentication Scheme for VR Devices...

Huadi Zhu (The University of Texas at Arlington), Mingyan Xiao (The University of Texas at Arlington), Demoria Sherman (The University of Texas at Arlington), Ming Li (The University of Texas at Arlington)

Read More

Formally Verified Software Update Management System in Automotive

Jaewan Seo, Jiwon Kwak, Seungjoo Kim (Korea University)

Read More

The “Beatrix” Resurrections: Robust Backdoor Detection via Gram Matrices

Wanlun Ma (Swinburne University of Technology), Derui Wang (CSIRO’s Data61), Ruoxi Sun (The University of Adelaide & CSIRO's Data61), Minhui Xue (CSIRO's Data61), Sheng Wen (Swinburne University of Technology), Yang Xiang (Digital Research & Innovation Capability Platform, Swinburne University of Technology)

Read More

Position Paper: Space System Threat Models Must Account for...

Benjamin Cyr and Yan Long (University of Michigan), Takeshi Sugawara (The University of Electro-Communications), Kevin Fu (Northeastern University)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)