Zheng Leong Chua (National University of Singapore), Yanhao Wang (TCA/SKLCS, Institute of Software, Chinese Academy of Sciences), Teodora Baluta (National University of Singapore), Prateek Saxena (National University of Singapore), Zhenkai Liang (National University of Singapore), Purui Su (TCA/SKLCS, Institute of Software, Chinese Academy of Sciences)

Dynamic binary taint analysis has wide applications in the security analysis of commercial-off-the-shelf (COTS) binaries. One of the key challenges in dynamic binary analysis is to specify the taint rules that capture how taint information propagates for each instruction on an architecture. Most of the existing solutions specify taint rules using a deductive approach by summarizing the rules manually after analyzing the instruction semantics. Intuitively, taint propagation reflects on how an instruction input affects its output and thus can be observed from instruction executions. In this work, we propose an inductive method for taint propagation and develop a universal taint tracking engine that is architecture-agnostic. Our taint engine, TAINTINDUCE, can learn taint rules with minimal architectural knowledge by observing the execution behavior of instructions. To measure its correctness and guide taint rule generation, we define the precise notion of soundness for bit-level taint tracking in this novel setup. In our evaluation, we show that TAINT INDUCE automatically learns rules for 4 widely used architectures: x86, x64, AArch64, and MIPS-I. It can detect vulnerabilities for 24 CVEs in 15 applications on both Linux and Windows over millions of instructions and is comparable with other mature existing tools (TEMU [51], libdft [32], Triton [42]). TAINTINDUCE can be used as a standalone taint engine or be used to complement existing taint engines for unhandled instructions. Further, it can be used as a cross-referencing tool to uncover bugs in taint engines, emulation implementations and ISA documentations.

View More Papers

Balancing Image Privacy and Usability with Thumbnail-Preserving Encryption

Kimia Tajik (Oregon State University), Akshith Gunasekaran (Oregon State University), Rhea Dutta (Cornell University), Brandon Ellis (Oregon State University), Rakesh B. Bobba (Oregon State University), Mike Rosulek (Oregon State University), Charles V. Wright (Portland State University), Wu-Chi Feng (Portland State University)

Read More

PeriScope: An Effective Probing and Fuzzing Framework for the...

Dokyung Song (University of California, Irvine), Felicitas Hetzelt (Technical University of Berlin), Dipanjan Das (University of California, Santa Barbara), Chad Spensky (University of California, Santa Barbara), Yeoul Na (University of California, Irvine), Stijn Volckaert (University of California, Irvine and KU Leuven), Giovanni Vigna (University of California, Santa Barbara), Christopher Kruegel (University of California, Santa Barbara),…

Read More

A Treasury System for Cryptocurrencies: Enabling Better Collaborative Intelligence

Bingsheng Zhang (Lancaster University), Roman Oliynykov (IOHK Ltd.), Hamed Balogun (Lancaster University)

Read More

Geo-locating Drivers: A Study of Sensitive Data Leakage in...

Qingchuan Zhao (The Ohio State University), Chaoshun Zuo (The Ohio State University), Giancarlo Pellegrino (CISPA, Saarland University; Stanford University), Zhiqiang Lin (The Ohio State University)

Read More