Xiaoguang Li (Xidian University, Purdue University), Zitao Li (Alibaba Group (U.S.) Inc.), Ninghui Li (Purdue University), Wenhai Sun (Purdue University, West Lafayette, USA)

Recent studies reveal that local differential privacy (LDP) protocols are vulnerable to data poisoning attacks where an attacker can manipulate the final estimate on the server by leveraging the characteristics of LDP and sending carefully crafted data from a small fraction of controlled local clients. This vulnerability raises concerns regarding the robustness and reliability of LDP in hostile environments.

In this paper, we conduct a systematic investigation of the robustness of state-of-the-art LDP protocols for numerical attributes, i.e., categorical frequency oracles (CFOs) with binning and consistency, and distribution reconstruction. We evaluate protocol robustness through an attack-driven approach and propose new metrics for cross-protocol attack gain measurement. The results indicate that Square Wave and CFO-based protocols in the textit{Server} setting are more robust against the attack compared to the CFO-based protocols in the textit{User} setting. Our evaluation also unfolds new relationships between LDP security and its inherent design choices. We found that the hash domain size in local-hashing-based LDP has a profound impact on protocol robustness beyond the well-known effect on utility. Further, we propose a textit{zero-shot attack detection} by leveraging the rich reconstructed distribution information. The experiment show that our detection significantly improves the existing methods and effectively identifies data manipulation in challenging scenarios.

View More Papers

VulShield: Protecting Vulnerable Code Before Deploying Patches

Yuan Li (Zhongguancun Laboratory & Tsinghua University), Chao Zhang (Tsinghua University & JCSS & Zhongguancun Laboratory), Jinhao Zhu (UC Berkeley), Penghui Li (Zhongguancun Laboratory), Chenyang Li (Peking University), Songtao Yang (Zhongguancun Laboratory), Wende Tan (Tsinghua University)

Read More

Repurposing Neural Networks for Efficient Cryptographic Computation

Xin Jin (The Ohio State University), Shiqing Ma (University of Massachusetts Amherst), Zhiqiang Lin (The Ohio State University)

Read More

BumbleBee: Secure Two-party Inference Framework for Large Transformers

Wen-jie Lu (Ant Group), Zhicong Huang (Ant Group), Zhen Gu (Alibaba Group), Jingyu Li (Ant Group & Zhejiang University), Jian Liu (Zhejiang University), Cheng Hong (Ant Group), Kui Ren (Zhejiang University), Tao Wei (Ant Group), WenGuang Chen (Ant Group)

Read More

ReDAN: An Empirical Study on Remote DoS Attacks against...

Xuewei Feng (Tsinghua University), Yuxiang Yang (Tsinghua University), Qi Li (Tsinghua University), Xingxiang Zhan (Zhongguancun Lab), Kun Sun (George Mason University), Ziqiang Wang (Southeast University), Ao Wang (Southeast University), Ganqiu Du (China Software Testing Center), Ke Xu (Tsinghua University)

Read More