Piyush Kumar Sharma (imec-COSIC, KU Leuven), Devashish Gosain (Max Planck Institute for Informatics), Claudia Diaz (Nym Technologies, SA and imec-COSIC, KU Leuven)

Cryptocurrency systems can be subject to deanonymization attacks by exploiting the network-level communication on their peer-to-peer network. Adversaries who control a set of colluding node(s) within the peer-to-peer network can observe transactions being exchanged and infer the parties involved. Thus, various network anonymity schemes have been proposed to mitigate this problem, with some solutions providing theoretical anonymity guarantees.

In this work, we model such peer-to-peer network anonymity solutions and evaluate their anonymity guarantees. To do so, we propose a novel framework that uses Bayesian inference to obtain the probability distributions linking transactions to their possible originators. We characterize transaction anonymity with those distributions, using entropy as metric of adversarial uncertainty on the originator's identity. In particular, we model Dandelion, Dandelion++, and Lightning Network. We study different configurations and demonstrate that none of them offers acceptable anonymity to their users. For instance, our analysis reveals that in the widely deployed Lightning Network, with $1%$ strategically chosen colluding nodes the adversary can uniquely determine the originator for $approx50%$ of the total transactions in the network. In Dandelion, an adversary that controls $15%$ of the nodes has on average uncertainty among only $8$ possible originators. Moreover, we observe that due to the way Dandelion and Dandelion++ are designed, increasing the network size does not correspond to an increase in the anonymity set of potential originators. Alarmingly, our longitudinal analysis of Lightning Network reveals rather an inverse trend---with the growth of the network the overall anonymity decreases.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 66 ) ) ) [post__not_in] => Array ( [0] => 13176 ) )

On the Feasibility of Profiling Electric Vehicles through Charging...

Ankit Gangwal (IIIT Hyderabad), Aakash Jain (IIIT Hyderabad) and Mauro Conti (University of Padua)

Read More

Evasion Attacks and Defenses on Smart Home Physical Event...

Muslum Ozgur Ozmen (Purdue University), Ruoyu Song (Purdue University), Habiba Farrukh (Purdue University), Z. Berkay Celik (Purdue University)

Read More

podft: On Accelerating Dynamic Taint Analysis with Precise Path...

Zhiyou Tian (Xidian University), Cong Sun (Xidian University), Dongrui Zeng (Palo Alto Networks), Gang Tan (Pennsylvania State University)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)