Ziqiang Wang (Southeast University), Xuewei Feng (Tsinghua University), Qi Li (Tsinghua University), Kun Sun (George Mason University), Yuxiang Yang (Tsinghua University), Mengyuan Li (University of Toronto), Ganqiu Du (China Software Testing Center), Ke Xu (Tsinghua University), Jianping Wu (Tsinghua University)

In this paper, we unveil a fundamental side channel in Wi-Fi networks, specifically the observable frame size, which can be exploited by attackers to conduct TCP hijacking attacks.

Despite the various security mechanisms (e.g., WEP and WPA2/WPA3) implemented to safeguard Wi-Fi networks, our study reveals that an off-path attacker can still extract sufficient information from the frame size side channel to hijack the victim's TCP connection.

Our side channel attack is based on two significant findings: (i) response packets (e.g., ACK and RST) generated by TCP receivers vary in size, and (ii) the encrypted frames containing these response packets have consistent and distinguishable sizes.

By observing the size of the victim's encrypted frames, the attacker can detect and hijack the victim's TCP connections.

We validate the effectiveness of this side channel attack through two case studies, i.e., SSH DoS and web traffic manipulation.

Precisely, our attack can terminate the victim's SSH session in 19 seconds and inject malicious data into the victim's web traffic within 28 seconds.

Furthermore, we conduct extensive measurements to evaluate the impact of our attack on real-world Wi-Fi networks. We test 30 popular wireless routers from 9 well-known vendors, and none of these routers can protect victims from our attack. Besides, we implement our attack in 80 real-world Wi-Fi networks and successfully hijack the victim's TCP connections in 75 (93.75%) evaluated Wi-Fi networks.

We have responsibly disclosed the vulnerability to the Wi-Fi Alliance and proposed several mitigation strategies to address this issue.

View More Papers

Blindfold: Confidential Memory Management by Untrusted Operating System

Caihua Li (Yale University), Seung-seob Lee (Yale University), Lin Zhong (Yale University)

Read More

User Comprehension and Comfort with Eye-Tracking and Hand-Tracking Permissions...

Kaiming Cheng (University of Washington), Mattea Sim (Indiana University), Tadayoshi Kohno (University of Washington), Franziska Roesner (University of Washington)

Read More

PBP: Post-training Backdoor Purification for Malware Classifiers

Dung Thuy Nguyen (Vanderbilt University), Ngoc N. Tran (Vanderbilt University), Taylor T. Johnson (Vanderbilt University), Kevin Leach (Vanderbilt University)

Read More

Vision: Comparison of AI-assisted Policy Development Between Professionals and...

Rishika Thorat (Purdue University), Tatiana Ringenberg (Purdue University)

Read More