Yanzuo Chen (The Hong Kong University of Science and Technology), Yuanyuan Yuan (The Hong Kong University of Science and Technology), Shuai Wang (The Hong Kong University of Science and Technology)

The rapid adoption of deep neural network (DNN) models on a variety of hardware platforms has boosted the development of deep learning (DL) compilers. DL compilers take as input the high-level DNN model specifications and generate optimized DNN executables for diverse hardware architectures like CPUs and GPUs. Despite the emerging adoption of DL compilers in real-world scenarios, no solutions exist to protect DNN executables. To fill this critical gap, this paper introduces OBSAN, a fast sanitizer designed to check out-of-bound (OOB) behavior of DNN executables. From a holistic view, DNN incorporates bidirectional computation: forward propagation that predicts an output based on an input, and backward propagation that characterizes how the forward prediction is made. Both neuron activations in forward propagation and the gradients in backward propagation should fall within valid ranges, and deviations from the valid ranges would be considered as OOB.

OOB is primarily related to unsafe behavior of DNNs, which root from anomalous inputs and may cause mispredictions or even exploitation via adversarial examples (AEs). We thus design OBSAN, which includes two variants, FOBSAN and BOBSAN, that can detect OOB in the forward and backward propagations, respectively. Each OBSAN is designed as extra passes of DL compilers to integrate with large-scale DNN models, and we design various optimization schemes to reduce the overhead of OBSAN. Evaluations over various anomalous inputs show that OBSAN manifests promising OOB detectability with low overhead. We further present two downstream applications to show how OBSAN prevents online AE generation and facilitates feedback-driven fuzz testing toward DNN executables.

View More Papers

Breaking and Fixing Virtual Channels: Domino Attack and Donner

Lukas Aumayr (TU Wien), Pedro Moreno-Sanchez (IMDEA Software Institute), Aniket Kate (Purdue University / Supra), Matteo Maffei (Christian Doppler Laboratory Blockchain Technologies for the Internet of Things / TU Wien)

Read More

Adversarial Robustness for Tabular Data through Cost and Utility...

Klim Kireev (EPFL), Bogdan Kulynych (EPFL), Carmela Troncoso (EPFL)

Read More

Detection and Resolution of Control Decision Anomalies

Prof. Kang Shin (Kevin and Nancy O'Connor Professor of Computer Science, and the Founding Director of the Real-Time Computing Laboratory (RTCL) in the Electrical Engineering and Computer Science Department at the University of Michigan)

Read More

Unlocking the Potential of Domain Aware Binary Analysis in...

Dr. Zhiqiang Lin (Distinguished Professor of Engineering at The Ohio State University)

Read More