Shangqi Lai (Monash University), Xingliang Yuan (Monash University), Joseph K. Liu (Monash University), Xun Yi (RMIT University), Qi Li (Tsinghua University), Dongxi Liu (Data61, CSIRO), Surya Nepal (Data61, CSIRO)

Network function virtualisation enables versatile network functions as cloud services with reduced cost. Specifically, network measurement tasks such as heavy-hitter detection and flow distribution estimation serve many core network functions for improved performance and security of enterprise networks. However, deploying network measurement services in third-party multi-tenant cloud service providers raises critical privacy and security concerns. Recent studies demonstrate that leaking and abusing flow statistics can lead to severe network attacks such as DDoS, network topology manipulation and poisoning, etc.

In this paper, we propose OblivSketch, an oblivious network measurement service using Intel SGX. It employs hardware enclave for secure network statistics generation and queries. The statistics are maintained in newly designed oblivious data structures inside the SGX enclave and queried by data-oblivious algorithms to prevent data leakage caused by access patterns to the memory of SGX. To demonstrate the practicality, we implement OblivSketch as a full-fledge service integrated with the off-the-shelf SDN framework. The evaluations demonstrate that OblivSketch consumes a constant and small memory space (6MB) to track a massive amount of flows (from 30k to 1.45m), and it takes no more than 15ms to respond six widely adopted measurement queries for a 5s-trace with 70k flows.

View More Papers

Safer Illinois and RokWall: Privacy Preserving University Health Apps...

Vikram Sharma Mailthody, James Wei, Nicholas Chen, Mohammad Behnia, Ruihao Yao, Qihao Wang, Vedant Agarwal, Churan He, Lijian Wang, Leihao Chen, Amit Agarwal, Edward Richter, Wen-mei Hwu, and Christopher Fletcher (University of Illinois at Urbana-Champaign); Jinjun Xiong (IBM); Andrew Miller and Sanjay Patel (University of Illinois at Urbana-Champaign)

Read More

POP and PUSH: Demystifying and Defending against (Mach) Port-oriented...

Min Zheng (Orion Security Lab, Alibaba Group), Xiaolong Bai (Orion Security Lab, Alibaba Group), Yajin Zhou (Zhejiang University), Chao Zhang (Institute for Network Science and Cyberspace, Tsinghua University), Fuping Qu (Orion Security Lab, Alibaba Group)

Read More

WATSON: Abstracting Behaviors from Audit Logs via Aggregation of...

Jun Zeng (National University of Singapore), Zheng Leong Chua (Independent Researcher), Yinfang Chen (National University of Singapore), Kaihang Ji (National University of Singapore), Zhenkai Liang (National University of Singapore), Jian Mao (Beihang University)

Read More

CROW: Code Diversification for WebAssembly

Javier Cabrera Arteaga, Orestis Floros, Benoit Baudry, Martin Monperrus (KTH Royal Institute of Technology), Oscar Vera Perez (Univ Rennes, Inria, CNRS, IRISA)

Read More