Zhiwei Shang (University of Waterloo), Simon Oya (University of Waterloo), Andreas Peter (University of Twente), Florian Kerschbaum (University of Waterloo)

Searchable Symmetric Encryption (SSE) allows a data owner to securely outsource its encrypted data to a cloud server while maintaining the ability to search over it and retrieve matched documents. Most existing SSE schemes leak which documents are accessed per query, i.e., the so-called access pattern, and thus are vulnerable to attacks that can recover the database or the queried keywords. Current techniques that fully hide access patterns, such as ORAM or PIR, suffer from heavy communication or computational costs, and are not designed with search capabilities in mind. Recently, Chen et al. (INFOCOM'18) proposed an obfuscation framework for SSE that protects the access pattern in a differentially private way with a reasonable utility cost. However, this scheme always produces the same obfuscated access pattern when querying for the same keyword, and thus leaks the so-called search pattern, i.e., how many times a certain query is performed. This leakage makes the proposal vulnerable to certain database and query recovery attacks.

In this paper, we propose OSSE (Obfuscated SSE), an SSE scheme that obfuscates the access pattern independently for each query performed. This in turn hides the search pattern and makes our scheme resistant against attacks that rely on this leakage. Given certain reasonable assumptions on the database and query distribution, our scheme has smaller communication overhead than ORAM-based SSE. Furthermore, our scheme works in a single communication round and requires very small constant client-side storage. Our empirical evaluation shows that OSSE is highly effective at protecting against different query recovery attacks while keeping a reasonable utility level. Our protocol provides significantly more protection than the proposal by Chen et al. against some state-of-the-art attacks, which demonstrates the importance of hiding search patterns in designing effective privacy-preserving SSE schemes.

View More Papers

Low-risk Privacy-preserving Electric Vehicle Charging with Payments

Andreas Unterweger, Fabian Knirsch, Clemens Brunner and Dominik Engel (Center for Secure Energy Informatics, Salzburg University of Applied Sciences, Puch bei Hallein, Austria)

Read More

OblivSketch: Oblivious Network Measurement as a Cloud Service

Shangqi Lai (Monash University), Xingliang Yuan (Monash University), Joseph K. Liu (Monash University), Xun Yi (RMIT University), Qi Li (Tsinghua University), Dongxi Liu (Data61, CSIRO), Surya Nepal (Data61, CSIRO)

Read More

SODA: A Generic Online Detection Framework for Smart Contracts

Ting Chen (University of Electronic Science and Technology of China), Rong Cao (University of Electronic Science and Technology of China), Ting Li (University of Electronic Science and Technology of China), Xiapu Luo (The Hong Kong Polytechnic University), Guofei Gu (Texas A&M University), Yufei Zhang (University of Electronic Science and Technology of China), Zhou Liao (University…

Read More

KUBO: Precise and Scalable Detection of User-triggerable Undefined Behavior...

Changming Liu (Northeastern University), Yaohui Chen (Facebook Inc.), Long Lu (Northeastern University)

Read More