Zhiwei Shang (University of Waterloo), Simon Oya (University of Waterloo), Andreas Peter (University of Twente), Florian Kerschbaum (University of Waterloo)

Searchable Symmetric Encryption (SSE) allows a data owner to securely outsource its encrypted data to a cloud server while maintaining the ability to search over it and retrieve matched documents. Most existing SSE schemes leak which documents are accessed per query, i.e., the so-called access pattern, and thus are vulnerable to attacks that can recover the database or the queried keywords. Current techniques that fully hide access patterns, such as ORAM or PIR, suffer from heavy communication or computational costs, and are not designed with search capabilities in mind. Recently, Chen et al. (INFOCOM'18) proposed an obfuscation framework for SSE that protects the access pattern in a differentially private way with a reasonable utility cost. However, this scheme always produces the same obfuscated access pattern when querying for the same keyword, and thus leaks the so-called search pattern, i.e., how many times a certain query is performed. This leakage makes the proposal vulnerable to certain database and query recovery attacks.

In this paper, we propose OSSE (Obfuscated SSE), an SSE scheme that obfuscates the access pattern independently for each query performed. This in turn hides the search pattern and makes our scheme resistant against attacks that rely on this leakage. Given certain reasonable assumptions on the database and query distribution, our scheme has smaller communication overhead than ORAM-based SSE. Furthermore, our scheme works in a single communication round and requires very small constant client-side storage. Our empirical evaluation shows that OSSE is highly effective at protecting against different query recovery attacks while keeping a reasonable utility level. Our protocol provides significantly more protection than the proposal by Chen et al. against some state-of-the-art attacks, which demonstrates the importance of hiding search patterns in designing effective privacy-preserving SSE schemes.

View More Papers

Evaluating Personal Data Control In Mobile Applications Using Heuristics

Alain Giboin (UCA, INRIA, CNRS, I3S), Karima Boudaoud (UCA, CNRS, I3S), Patrice Pena (Userthink), Yoann Bertrand (UCA, CNRS, I3S), Fabien Gandon (UCA, INRIA, CNRS, I3S)

Read More

V2X Security: Status and Open Challenges

Jonathan Petit (Director Of Engineering at Qualcomm Technologies) Dr. Jonathan Petit is Director of Engineering at Qualcomm Technologies, Inc., where he leads research in security of connected and automated vehicles (CAV). His team works on designing security solutions, but also develops tools for automotive penetration testing and builds prototypes. His recent work on misbehavior protection…

Read More

From Library Portability to Para-rehosting: Natively Executing Microcontroller Software...

Wenqiang Li (State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences; Department of Computer Science, the University of Georgia, USA; School of Cyber Security, University of Chinese Academy of Sciences; Department of Electrical Engineering and Computer Science, the University of Kansas, USA), Le Guan (Department of Computer Science, the University…

Read More

CV-Inspector: Towards Automating Detection of Adblock Circumvention

Hieu Le (University of California, Irvine), Athina Markopoulou (University of California, Irvine), Zubair Shafiq (University of California, Davis)

Read More