Nicola Ruaro (University of California, Santa Barbara), Fabio Gritti (University of California, Santa Barbara), Robert McLaughlin (University of California, Santa Barbara), Ilya Grishchenko (University of California, Santa Barbara), Christopher Kruegel (University of California, Santa Barbara), Giovanni Vigna (University of California, Santa Barbara)

In recent years, the Ethereum blockchain has seen significant growth and adoption. One of the key factors of its success is the possibility to run immutable programs known as smart contracts. Smart contracts allow for the automatic manipulation of digital assets and play a central role in the new decentralized finance (DeFi) ecosystem. With the growth of DeFi, the interactions between smart contracts have become increasingly complex, enabling advanced financial protocols and applications. However, bugs in smart contract interactions are also a common cause of critical vulnerabilities that result in considerable financial losses.

In this paper, we study and detect a type of cross-contract vulnerability known as a storage collision. A smart contract uses storage to persistently store its data on the blockchain. Typically, each contract has its own separate storage. However, it is also possible that two smart contracts share their storage (using a delegate call). Unfortunately, when these two contracts have different understandings of the types/semantics of their shared storage, a storage collision vulnerability can occur. This may lead to unexpected behavior such as denial of service (frozen funds), privilege escalation, and theft of financial assets.

To detect and investigate the impact of storage collision vulnerabilities at scale, we propose CRUSH, a novel analysis system that discovers these flaws and synthesizes proof-of-concept exploits. We leverage CRUSH to perform a large-scale analysis of 14,237,696 smart contracts deployed on the Ethereum blockchain since its genesis. CRUSH identifies 14,891 potentially vulnerable contracts and automatically synthesizes an end-to-end exploit for 956 of them. Our system uncovers more than $6 million of novel, previously unreported potential financial damage caused by storage collision vulnerabilities.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 104 ) ) ) [post__not_in] => Array ( [0] => 16928 ) )

LDR: Secure and Efficient Linux Driver Runtime for Embedded...

Huaiyu Yan (Southeast University), Zhen Ling (Southeast University), Haobo Li (Southeast University), Lan Luo (Anhui University of Technology), Xinhui Shao (Southeast University), Kai Dong (Southeast University), Ping Jiang (Southeast University), Ming Yang (Southeast University), Junzhou Luo (Southeast University, Nanjing, P.R. China), Xinwen Fu (University of Massachusetts Lowell)

Read More

More Lightweight, yet Stronger: Revisiting OSCORE’s Replay Protection

Konrad-Felix Krentz (Uppsala University), Thiemo Voigt (Uppsala University, RISE Computer Science)

Read More

The Advantages of Distributed TCAM Firewalls in Automotive Real-Time...

Evan Allen (Virginia Tech), Zeb Bowden (Virginia Tech Transportation Institute), J. Scot Ransbottom (Virginia Tech)

Read More

The impact of data-heavy, post-quantum TLS 1.3 on the...

Panos Kampanakis and Will Childs-Klein (AWS)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)