Nicola Ruaro (University of California, Santa Barbara), Fabio Gritti (University of California, Santa Barbara), Robert McLaughlin (University of California, Santa Barbara), Ilya Grishchenko (University of California, Santa Barbara), Christopher Kruegel (University of California, Santa Barbara), Giovanni Vigna (University of California, Santa Barbara)

In recent years, the Ethereum blockchain has seen significant growth and adoption. One of the key factors of its success is the possibility to run immutable programs known as smart contracts. Smart contracts allow for the automatic manipulation of digital assets and play a central role in the new decentralized finance (DeFi) ecosystem. With the growth of DeFi, the interactions between smart contracts have become increasingly complex, enabling advanced financial protocols and applications. However, bugs in smart contract interactions are also a common cause of critical vulnerabilities that result in considerable financial losses.

In this paper, we study and detect a type of cross-contract vulnerability known as a storage collision. A smart contract uses storage to persistently store its data on the blockchain. Typically, each contract has its own separate storage. However, it is also possible that two smart contracts share their storage (using a delegate call). Unfortunately, when these two contracts have different understandings of the types/semantics of their shared storage, a storage collision vulnerability can occur. This may lead to unexpected behavior such as denial of service (frozen funds), privilege escalation, and theft of financial assets.

To detect and investigate the impact of storage collision vulnerabilities at scale, we propose CRUSH, a novel analysis system that discovers these flaws and synthesizes proof-of-concept exploits. We leverage CRUSH to perform a large-scale analysis of 14,237,696 smart contracts deployed on the Ethereum blockchain since its genesis. CRUSH identifies 14,891 potentially vulnerable contracts and automatically synthesizes an end-to-end exploit for 956 of them. Our system uncovers more than $6 million of novel, previously unreported potential financial damage caused by storage collision vulnerabilities.

View More Papers

GhostType: The Limits of Using Contactless Electromagnetic Interference to...

Qinhong Jiang (Zhejiang University), Yanze Ren (Zhejiang University), Yan Long (University of Michigan), Chen Yan (Zhejiang University), Yumai Sun (University of Michigan), Xiaoyu Ji (Zhejiang University), Kevin Fu (Northeastern University), Wenyuan Xu (Zhejiang University)

Read More

dRR: A Decentralized, Scalable, and Auditable Architecture for RPKI...

Yingying Su (Tsinghua university), Dan Li (Tsinghua university), Li Chen (Zhongguancun Laboratory), Qi Li (Tsinghua university), Sitong Ling (Tsinghua University)

Read More

Understanding the Implementation and Security Implications of Protective DNS...

Mingxuan Liu (Zhongguancun Laboratory; Tsinghua University), Yiming Zhang (Tsinghua University), Xiang Li (Tsinghua University), Chaoyi Lu (Tsinghua University), Baojun Liu (Tsinghua University), Haixin Duan (Tsinghua University; Zhongguancun Laboratory), Xiaofeng Zheng (Institute for Network Sciences and Cyberspace, Tsinghua University; QiAnXin Technology Research Institute & Legendsec Information Technology (Beijing) Inc.)

Read More

GraphGuard: Detecting and Counteracting Training Data Misuse in Graph...

Bang Wu (CSIRO's Data61/Monash University), He Zhang (Monash University), Xiangwen Yang (Monash University), Shuo Wang (CSIRO's Data61/Shanghai Jiao Tong University), Minhui Xue (CSIRO's Data61), Shirui Pan (Griffith University), Xingliang Yuan (Monash University)

Read More