Yapeng Ye (Purdue University), Zhuo Zhang (Purdue University), Fei Wang (Purdue University), Xiangyu Zhang (Purdue University), Dongyan Xu (Purdue University)

Network protocol reverse engineering is an important challenge with many security applications. A popular kind of method leverages network message traces. These methods rely on pair-wise sequence alignment and/or tokenization. They have various limitations such as difficulties of handling a large number of messages and dealing with inherent uncertainty. In this paper, we propose a novel probabilistic method for network trace based protocol reverse engineering. It first makes use of multiple sequence alignment to align all messages and then reduces the problem to identifying the keyword field from the set of aligned fields. The keyword field determines the type of a message. The identification is probabilistic, using random variables to indicate the likelihood of each field (being the true keyword). A joint distribution is constructed among the random variables and the observations of the messages. Probabilistic inference is then performed to determine the most likely keyword field, which allows messages to be properly clustered by their true types and enables the recovery of message format and state machine. Our evaluation on 10 protocols shows that our technique substantially outperforms the state-of-the-art and our case studies show the unique advantages of our technique in IoT protocol reverse engineering and malware analysis.

View More Papers

ROV++: Improved Deployable Defense against BGP Hijacking

Reynaldo Morillo (University of Connecticut), Justin Furuness (University of Connecticut), Cameron Morris (University of Connecticut), James Breslin (University of Connecticut), Amir Herzberg (University of Connecticut), Bing Wang (University of Connecticut)

Read More

FARE: Enabling Fine-grained Attack Categorization under Low-quality Labeled Data

Junjie Liang (The Pennsylvania State University), Wenbo Guo (The Pennsylvania State University), Tongbo Luo (Robinhood), Vasant Honavar (The Pennsylvania State University), Gang Wang (University of Illinois at Urbana-Champaign), Xinyu Xing (The Pennsylvania State University)

Read More

WATSON: Abstracting Behaviors from Audit Logs via Aggregation of...

Jun Zeng (National University of Singapore), Zheng Leong Chua (Independent Researcher), Yinfang Chen (National University of Singapore), Kaihang Ji (National University of Singapore), Zhenkai Liang (National University of Singapore), Jian Mao (Beihang University)

Read More

Short Paper: Declarative Demand-Driven Reverse Engineering

Yihao Sun, Jeffrey Ching, Kristopher Micinski (Department of Electical Engineering and Computer Science, Syracuse University)

Read More