Seungkyun Han (Chungnam National University), Jinsoo Jang (Chungnam National University)

We propose a solution, MyTEE, that enables a trusted execution environment (TEE) to be built even in worst-case environments wherein major hardware security primitives (e.g., ARM TrustZone extensions for memory access control) are absent. Crafting page tables for memory isolation, filtering DMA packets, and enabling secure IO exist at the core of MyTEE. Particularly for secure IO, we shield the IO buffers and memory-mapped registers of the controllers and securely escalate the privilege of the partial code block of the device drivers to provide permission to access the protected objects. By doing so, the need to host the device driver in the TEE (in whole or in part), which can potentially introduce a new attack surface, is exempted. The proof-of-concept (PoC) of MyTEE is implemented on the Raspberry Pi 3 board, which does not support most of the important security primitives for building the TEE. Additionally, three secure IO examples with the hardware TPM, framebuffer, and USB keyboard are demonstrated to show the feasibility of our approach.

View More Papers

Automata-Based Automated Detection of State Machine Bugs in Protocol...

Paul Fiterau-Brostean (Uppsala University, Sweden), Bengt Jonsson (Uppsala University, Sweden), Konstantinos Sagonas (Uppsala University, Sweden and National Technical University of Athens, Greece), Fredrik Tåquist (Uppsala University, Sweden)

Read More

Non-Interactive Privacy-Preserving Sybil-Free Authentication Scheme in VANETs

Mahdi Akil (Karlstad University), Leonardo Martucci (Karlstad University), Jaap-Henk Hoepman (Radboud University)

Read More

Fine-Grained Trackability in Protocol Executions

Ksenia Budykho (Surrey Centre for Cyber Security, University of Surrey, UK), Ioana Boureanu (Surrey Centre for Cyber Security, University of Surrey, UK), Steve Wesemeyer (Surrey Centre for Cyber Security, University of Surrey, UK), Daniel Romero (NCC Group), Matt Lewis (NCC Group), Yogaratnam Rahulan (5G/6G Innovation Centre - 5GIC/6GIC, University of Surrey, UK), Fortunat Rajaona (Surrey…

Read More

FUZZILLI: Fuzzing for JavaScript JIT Compiler Vulnerabilities

Samuel Groß (Google), Simon Koch (TU Braunschweig), Lukas Bernhard (Ruhr-University Bochum), Thorsten Holz (CISPA Helmholtz Center for Information Security), Martin Johns (TU Braunschweig)

Read More