Kushal Babel (Cornell Tech & IC3), Andrey Chursin (Mysten Labs), George Danezis (Mysten Labs & University College London (UCL)), Anastasios Kichidis (Mysten Labs), Lefteris Kokoris-Kogias (Mysten Labs & IST Austria), Arun Koshy (Mysten Labs), Alberto Sonnino (Mysten Labs & University College London (UCL)), Mingwei Tian (Mysten Labs)

We introduce Mysticeti-C, the first DAG-based Byzantine consensus protocol to achieve the lower bounds of latency of 3 message rounds.
Since Mysticeti-C is built over DAGs it also achieves high resource efficiency and censorship resistance. Mysticeti-C achieves this latency improvement by avoiding explicit certification of the DAG blocks and by proposing a novel commit rule such that every block can be committed without delays, resulting in optimal latency in the steady state and under crash failures. We further extend Mysticeti-C to Mysticeti-FPC, which incorporates a fast commit path that achieves even lower latency for transferring assets. Unlike prior fast commit path protocols, Mysticeti-FPC minimizes the number of signatures and messages by weaving the fast path transactions into the DAG. This frees up resources, which subsequently result in better performance. We prove the safety and liveness in a Byzantine context. We evaluate both Mysticeti protocols and compare them with state-of-the-art consensus and fast path protocols to demonstrate their low latency and resource efficiency, as well as their more graceful degradation under crash failures. Mysticeti-C is the first Byzantine consensus protocol to achieve WAN latency of 0.5s for consensus commit while simultaneously maintaining state-of-the-art throughput of over 100k TPS. Finally, we report on integrating Mysticeti-C as the consensus protocol into a major deployed blockchain, resulting in over 4x latency reduction.

View More Papers

DRAGON: Predicting Decompiled Variable Data Types with Learned Confidence...

Caleb Stewart, Rhonda Gaede, Jeffrey Kulick (University of Alabama in Huntsville)

Read More

Modeling End-User Affective Discomfort With Mobile App Permissions Across...

Yuxi Wu (Georgia Institute of Technology and Northeastern University), Jacob Logas (Georgia Institute of Technology), Devansh Ponda (Georgia Institute of Technology), Julia Haines (Google), Jiaming Li (Google), Jeffrey Nichols (Apple), W. Keith Edwards (Georgia Institute of Technology), Sauvik Das (Carnegie Mellon University)

Read More

Evaluating Machine Learning-Based IoT Device Identification Models for Security...

Eman Maali (Imperial College London), Omar Alrawi (Georgia Institute of Technology), Julie McCann (Imperial College London)

Read More

MineShark: Cryptomining Traffic Detection at Scale

Shaoke Xi (Zhejiang University), Tianyi Fu (Zhejiang University), Kai Bu (Zhejiang University), Chunling Yang (Zhejiang University), Zhihua Chang (Zhejiang University), Wenzhi Chen (Zhejiang University), Zhou Ma (Zhejiang University), Chongjie Chen (HANG ZHOU CITY BRAIN CO., LTD), Yongsheng Shen (HANG ZHOU CITY BRAIN CO., LTD), Kui Ren (Zhejiang University)

Read More