Kushal Babel (Cornell Tech & IC3), Andrey Chursin (Mysten Labs), George Danezis (Mysten Labs & University College London (UCL)), Anastasios Kichidis (Mysten Labs), Lefteris Kokoris-Kogias (Mysten Labs & IST Austria), Arun Koshy (Mysten Labs), Alberto Sonnino (Mysten Labs & University College London (UCL)), Mingwei Tian (Mysten Labs)

We introduce Mysticeti-C, the first DAG-based Byzantine consensus protocol to achieve the lower bounds of latency of 3 message rounds.
Since Mysticeti-C is built over DAGs it also achieves high resource efficiency and censorship resistance. Mysticeti-C achieves this latency improvement by avoiding explicit certification of the DAG blocks and by proposing a novel commit rule such that every block can be committed without delays, resulting in optimal latency in the steady state and under crash failures. We further extend Mysticeti-C to Mysticeti-FPC, which incorporates a fast commit path that achieves even lower latency for transferring assets. Unlike prior fast commit path protocols, Mysticeti-FPC minimizes the number of signatures and messages by weaving the fast path transactions into the DAG. This frees up resources, which subsequently result in better performance. We prove the safety and liveness in a Byzantine context. We evaluate both Mysticeti protocols and compare them with state-of-the-art consensus and fast path protocols to demonstrate their low latency and resource efficiency, as well as their more graceful degradation under crash failures. Mysticeti-C is the first Byzantine consensus protocol to achieve WAN latency of 0.5s for consensus commit while simultaneously maintaining state-of-the-art throughput of over 100k TPS. Finally, we report on integrating Mysticeti-C as the consensus protocol into a major deployed blockchain, resulting in over 4x latency reduction.

View More Papers

LightAntenna: Characterizing the Limits of Fluorescent Lamp-Induced Electromagnetic Interference

Fengchen Yang (Zhejiang University), Wenze Cui (Zhejiang University), Xinfeng Li (Zhejiang University), Chen Yan (Zhejiang University), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University)

Read More

Kronos: A Secure and Generic Sharding Blockchain Consensus with...

Yizhong Liu (Beihang University), Andi Liu (Beihang University), Yuan Lu (Institute of Software Chinese Academy of Sciences), Zhuocheng Pan (Beihang University), Yinuo Li (Xi’an Jiaotong University), Jianwei Liu (Beihang University), Song Bian (Beihang University), Mauro Conti (University of Padua)

Read More

MTZK: Testing and Exploring Bugs in Zero-Knowledge (ZK) Compilers

Dongwei Xiao (The Hong Kong University of Science and Technology), Zhibo Liu (The Hong Kong University of Science and Technology), Yiteng Peng (The Hong Kong University of Science and Technology), Shuai Wang (The Hong Kong University of Science and Technology)

Read More

QMSan: Efficiently Detecting Uninitialized Memory Errors During Fuzzing

Matteo Marini (Sapienza University of Rome), Daniele Cono D'Elia (Sapienza University of Rome), Mathias Payer (EPFL), Leonardo Querzoni (Sapienza University of Rome)

Read More