Naif Saleh Almakhdhub (Purdue University and King Saud University), Abraham A. Clements (Sandia National Laboratories), Saurabh Bagchi (Purdue University), Mathias Payer (EPFL)

Embedded systems are deployed in security critical environments and have become a prominent target for remote attacks. Microcontroller-based systems (MCUS) are particularly vulnerable due to a combination of limited resources and low level programming which leads to bugs. Since MCUS are often a part of larger systems, vulnerabilities may jeopardize not just the security of the device itself but that of other systems as well. For example, exploiting a WiFi System on Chip (SoC) allows an attacker to hijack the smart phone's application processor.

Control-flow hijacking targeting the backward edge (e.g., Return-Oriented Programming--ROP) remains a threat for MCUS. Current defenses are either susceptible to ROP-style attacks or require special hardware such as a Trusted Execution Environment (TEE) that is not commonly available on MCUS.

We present µRAI, a compiler-based mitigation to emph{prevent} control-flow hijacking attacks targeting backward edges by enforcing the emph{Return Address Integrity (RAI)} property on MCUS. µRAI does not require any additional hardware such as TEE, making it applicable to the wide majority of MCUS. To achieve this, µRAI introduces a technique that moves return addresses from writable memory, to readable and executable memory. It re-purposes a single general purpose register that is never spilled, and uses it to resolve the correct return location. We evaluate against the different control-flow hijacking attacks scenarios targeting return addresses (e.g., arbitrary write), and demonstrate how µRAI prevents them all. Moreover, our evaluation shows that µRAI enforces its protection with negligible overhead.

View More Papers

Measuring the Deployment of Network Censorship Filters at Global...

Ram Sundara Raman (University of Michigan), Adrian Stoll (University of Michigan), Jakub Dalek (Citizen Lab, University of Toronto), Reethika Ramesh (University of Michigan), Will Scott (Independent), Roya Ensafi (University of Michigan)

Read More

HYPER-CUBE: High-Dimensional Hypervisor Fuzzing

Sergej Schumilo (Ruhr-Universität Bochum), Cornelius Aschermann (Ruhr-Universität Bochum), Ali Abbasi (Ruhr-Universität Bochum), Simon Wörner (Ruhr-Universität Bochum), Thorsten Holz (Ruhr-Universität Bochum)

Read More

Into the Deep Web: Understanding E-commerce Fraud from Autonomous...

Peng Wang (Indiana University Bloomington), Xiaojing Liao (Indiana University Bloomington), Yue Qin (Indiana University Bloomington), XiaoFeng Wang (Indiana University Bloomington)

Read More

BLAG: Improving the Accuracy of Blacklists

Sivaramakrishnan Ramanathan (University of Southern California/Information Sciences Institute), Jelena Mirkovic (University of Southern California/Information Sciences Institute), Minlan Yu (Harvard University)

Read More