Shaoke Xi (Zhejiang University), Tianyi Fu (Zhejiang University), Kai Bu (Zhejiang University), Chunling Yang (Zhejiang University), Zhihua Chang (Zhejiang University), Wenzhi Chen (Zhejiang University), Zhou Ma (Zhejiang University), Chongjie Chen (HANG ZHOU CITY BRAIN CO., LTD), Yongsheng Shen (HANG ZHOU CITY BRAIN CO., LTD), Kui Ren (Zhejiang University)

The rapid growth of cryptojacking and the increase in regulatory bans on cryptomining have prompted organizations to enhance detection ability within their networks. Traditional methods, including rule-based detection and deep packet inspection, fall short in timely and comprehensively identifying new and encrypted mining threats. In contrast, learning-based techniques show promise by identifying content-agnostic traffic patterns, adapting to a wide range of cryptomining configurations. However, existing learning-based systems often lack scalability in real-world detection, primarily due to challenges with unlabeled, imbalanced, and high-speed traffic inputs. To address these issues, we introduce MineShark, a system that identifies robust patterns of mining traffic to distinguish between vast quantities of benign traffic and automates the confirmation of model outcomes through active probing to prevent an overload of model alarms. As model inference labels are progressively confirmed, MineShark conducts self-improving updates to enhance model accuracy. MineShark is capable of line-rate detection at various traffic volume scales with the allocation of different amounts of CPU and GPU resources. In a 10 Gbps campus network deployment lasting ten months, MineShark detected cryptomining connections toward 105 mining pools ahead of concurrently deployed commercial systems, 17.6% of which were encrypted. It automatically filtered over 99.3% of false alarms and achieved an average packet processing throughput of 1.3 Mpps, meeting the line-rate demands of a 10 Gbps network, with a negligible loss rate of 0.2%. We publicize MineShark for broader use.

View More Papers

Eclipse Attacks on Monero's Peer-to-Peer Network

Ruisheng Shi (Beijing University of Posts and Telecommunications), Zhiyuan Peng (Beijing University of Posts and Telecommunications), Lina Lan (Beijing University of Posts and Telecommunications), Yulian Ge (Beijing University of Posts and Telecommunications), Peng Liu (Penn State University), Qin Wang (CSIRO Data61), Juan Wang (Wuhan University)

Read More

The State of https Adoption on the Web

Christoph Kerschbaumer (Mozilla Corporation), Frederik Braun (Mozilla Corporation), Simon Friedberger (Mozilla Corporation), Malte Jürgens (Mozilla Corporation)

Read More

Black-box Membership Inference Attacks against Fine-tuned Diffusion Models

Yan Pang (University of Virginia), Tianhao Wang (University of Virginia)

Read More

Non-intrusive and Unconstrained Keystroke Inference in VR Platforms via...

Tao Ni (City University of Hong Kong), Yuefeng Du (City University of Hong Kong), Qingchuan Zhao (City University of Hong Kong), Cong Wang (City University of Hong Kong)

Read More