René Helmke (Fraunhofer FKIE), Elmar Padilla (Fraunhofer FKIE, Germany), Nils Aschenbruck (University of Osnabrück)

Firmware corpora for vulnerability research should be textit{scientifically sound}. Yet, several practical challenges complicate the creation of sound corpora: Sample acquisition, e.g., is hard and one must overcome the barrier of proprietary or encrypted data. As image contents are unknown prior analysis, it is hard to select textit{high-quality} samples that can satisfy scientific demands.
Ideally, we help each other out by sharing data. But here, sharing is problematic due to copyright laws. Instead, papers must carefully document each step of corpus creation: If a step is unclear, replicability is jeopardized. This has cascading effects on result verifiability, representativeness, and, thus, soundness.

Despite all challenges, how can we maintain the soundness of firmware corpora? This paper thoroughly analyzes the problem space and investigates its impact on research: We distill practical binary analysis challenges that significantly influence corpus creation. We use these insights to derive guidelines that help researchers to nurture corpus replicability and representativeness. We apply them to 44 top tier papers and systematically analyze scientific corpus creation practices. Our comprehensive analysis confirms that there is currently no common ground in related work. It shows the added value of our guidelines, as they discover methodical issues in corpus creation and unveil miniscule step stones in documentation. These blur visions on representativeness, hinder replicability, and, thus, negatively impact the soundness of otherwise excellent work.

Finally, we show the feasibility of our guidelines and build a new corpus for large-scale analyses on Linux firmware: LFwC. We share rich meta data for good (and proven) replicability. We verify unpacking, deduplicate, identify contents, provide ground truth, and demonstrate LFwC's utility for research.

View More Papers

Revisiting Physical-World Adversarial Attack on Traffic Sign Recognition: A...

Ningfei Wang (University of California, Irvine), Shaoyuan Xie (University of California, Irvine), Takami Sato (University of California, Irvine), Yunpeng Luo (University of California, Irvine), Kaidi Xu (Drexel University), Qi Alfred Chen (University of California, Irvine)

Read More

Trim My View: An LLM-Based Code Query System for...

Sima Arasteh (University of Southern California), Pegah Jandaghi, Nicolaas Weideman (University of Southern California/Information Sciences Institute), Dennis Perepech, Mukund Raghothaman (University of Southern California), Christophe Hauser (Dartmouth College), Luis Garcia (University of Utah Kahlert School of Computing)

Read More

CCTAG: Configurable and Combinable Tagged Architecture

Zhanpeng Liu (Peking University), Yi Rong (Tsinghua University), Chenyang Li (Peking University), Wende Tan (Tsinghua University), Yuan Li (Zhongguancun Laboratory), Xinhui Han (Peking University), Songtao Yang (Zhongguancun Laboratory), Chao Zhang (Tsinghua University)

Read More

AI-Assisted RF Fingerprinting for Identification of User Devices in...

Aishwarya Jawne (Center for Connected Autonomy & AI, Florida Atlantic University), Georgios Sklivanitis (Center for Connected Autonomy & AI, Florida Atlantic University), Dimitris A. Pados (Center for Connected Autonomy & AI, Florida Atlantic University), Elizabeth Serena Bentley (Air Force Research Laboratory)

Read More