Ram Sundara Raman (University of Michigan), Adrian Stoll (University of Michigan), Jakub Dalek (Citizen Lab, University of Toronto), Reethika Ramesh (University of Michigan), Will Scott (Independent), Roya Ensafi (University of Michigan)

Content filtering technologies are often used for Internet censorship, but even as these technologies have become cheaper and easier to deploy, the censorship measurement community lacks a systematic approach to monitor their proliferation. Past research has focused on a handful of specific filtering technologies, each of which required cumbersome manual detective work to identify. Researchers and policymakers require a more comprehensive picture of the state and evolution of censorship based on content filtering in order to establish effective policies that protect Internet freedom.

In this work, we present FilterMap, a novel framework that can scalably monitor content filtering technologies based on their blockpages. FilterMap first compiles in-network and new remote censorship measurement techniques to gather blockpages from filter deployments. We then show how the observed blockpages can be clustered, generating signatures for longitudinal tracking. FilterMap outputs a map of regions of address space in which the same blockpages appear (corresponding to filter deployments), and each unique blockpage is manually verified to avoid false positives.

By collecting and analyzing more than 379 million measurements from 45,000 vantage points against more than 18,000 sensitive test domains, we are able to identify filter deployments associated with 90 vendors and actors and observe filtering in 103 countries. We detect the use of commercial filtering technologies for censorship in 36 out of 48 countries labeled as 'Not Free' or 'Partly Free' by the Freedom House ''Freedom on the Net'' report. The unrestricted transfer of content filtering technologies have led to high availability, low cost, and highly effective filtering techniques becoming easier to deploy and harder to circumvent. Identifying these filtering deployments highlights policy and corporate social responsibility issues, and adds accountability to filter manufacturers. Our continued publication of FilterMap data will help the international community track the scope, scale and evolution of content-based censorship.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 39 ) ) ) [post__not_in] => Array ( [0] => 5835 ) )

DESENSITIZATION: Privacy-Aware and Attack-Preserving Crash Report

Ren Ding (Georgia Institute of Technology), Hong Hu (Georgia Institute of Technology), Wen Xu (Georgia Institute of Technology), Taesoo Kim (Georgia Institute of Technology)

Read More

Trident: Efficient 4PC Framework for Privacy Preserving Machine Learning

Harsh Chaudhari (Indian Institute of Science, Bangalore), Rahul Rachuri (Aarhus University, Denmark), Ajith Suresh (Indian Institute of Science, Bangalore)

Read More

DefRec: Establishing Physical Function Virtualization to Disrupt Reconnaissance of...

Hui Lin (University of Nevada, Reno), Jianing Zhuang (University of Nevada, Reno), Yih-Chun Hu (University of Illinois, Urbana-Champaign), Huayu Zhou (University of Nevada, Reno)

Read More

Towards Plausible Graph Anonymization

Yang Zhang (CISPA Helmholtz Center for Information Security), Mathias Humbert (armasuisse Science and Technology), Bartlomiej Surma (CISPA Helmholtz Center for Information Security), Praveen Manoharan (CISPA Helmholtz Center for Information Security), Jilles Vreeken (CISPA Helmholtz Center for Information Security), Michael Backes (CISPA Helmholtz Center for Information Security)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)