Stephen Herwig (University of Maryland), Katura Harvey (University of Maryland, Max Planck Institute for Software Systems (MPI-SWS)), George Hughey (University of Maryland), Richard Roberts (University of Maryland, Max Planck Institute for Software Systems (MPI-SWS)), Dave Levin (University of Maryland)

The Internet of Things (IoT) introduces an unprecedented diversity and ubiquity to networked computing. It also introduces new attack surfaces that are a boon to attackers. The recent Mirai botnet showed the potential and power of a collection of compromised IoT devices. A new botnet, known as Hajime, targets many of the same devices as Mirai, but differs considerably in its design and operation. Hajime uses a public peer-to-peer system as its command and control infrastructure, and regularly introduces new exploits, thereby increasing its resilience.

We show that Hajime’s distributed design makes it a valuable tool for better understanding IoT botnets. For instance, Hajime cleanly separates its bots into different peer groups depending on their underlying hardware architecture. Through detailed measurement—active scanning of Hajime’s peer-to-peer infrastructure and passive, longitudinal collection of root DNS backscatter traffic—we show that Hajime can be used as a lens into how IoT botnets operate, what kinds of devices they compromise, and what countries are more (or less) susceptible. Our results show that there are more compromised IoT devices than previously reported; that these devices use an assortment of CPU architectures, the popularity of which varies widely by country; that churn is high among IoT devices; and that new exploits can quickly and drastically increase the size and power of IoT botnets. Our code and data are available to assist future efforts to measure and mitigate the growing threat of IoT botnets.

View More Papers

Measuring the Facebook Advertising Ecosystem

Athanasios Andreou (EURECOM), Márcio Silva (UFMG), Fabrício Benevenuto (UFMG), Oana Goga (Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG), Patrick Loiseau (Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG & MPI-SWS), Alan Mislove (Northeastern University)

Read More

Cleaning Up the Internet of Evil Things: Real-World Evidence...

Orcun Cetin (Delft University of Technology), Carlos Gañán (Delft University of Technology), Lisette Altena (Delft University of Technology), Takahiro Kasama (National Institute of Information and Communications Technology), Daisuke Inoue (National Institute of Information and Communications Technology), Kazuki Tamiya (Yokohama National University), Ying Tie (Yokohama National University), Katsunari Yoshioka (Yokohama National University), Michel van Eeten (Delft…

Read More

Coconut: Threshold Issuance Selective Disclosure Credentials with Applications to...

Alberto Sonnino (University College London (UCL)), Mustafa Al-Bassam (University College London (UCL)), Shehar Bano (University College London (UCL)), Sarah Meiklejohn (University College London (UCL)), George Danezis (University College London (UCL))

Read More

YODA: Enabling computationally intensive contracts on blockchains with Byzantine...

Sourav Das (Department of Computer Science and Engineering, Indian Institute of Technology Delhi), Vinay Joseph Ribeiro (Department of Computer Science and Engineering, Indian Institute of Technology Delhi), Abhijeet Anand (Department of Computer Science and Engineering, Indian Institute of Technology Delhi)

Read More