Virat Shejwalkar (UMass Amherst), Amir Houmansadr (UMass Amherst)

Federated learning (FL) enables many data owners (e.g., mobile devices) to train a joint ML model (e.g., a next-word prediction classifier) without the need of sharing their private training data.

However, FL is known to be susceptible to poisoning attacks by malicious participants (e.g., adversary-owned mobile devices) who aim at hampering the accuracy of the jointly trained model through sending malicious inputs during the federated training process.

In this paper, we present a generic framework for model poisoning attacks on FL. We show that our framework leads to poisoning attacks that substantially outperform state-of-the-art model poisoning attacks by large margins. For instance, our attacks result in $1.5times$ to $60times$ higher reductions in the accuracy of FL models compared to previously discovered poisoning attacks.

Our work demonstrates that existing Byzantine-robust FL algorithms are significantly more susceptible to model poisoning than previously thought. Motivated by this, we design a defense against FL poisoning, called emph{divide-and-conquer} (DnC). We demonstrate that DnC outperforms all existing Byzantine-robust FL algorithms in defeating model poisoning attacks,
specifically, it is $2.5times$ to $12times$ more resilient in our experiments with different datasets and models.

View More Papers

Who's Hosting the Block Party? Studying Third-Party Blockage of...

Marius Steffens (CISPA Helmholtz Center for Information Security), Marius Musch (TU Braunschweig), Martin Johns (TU Braunschweig), Ben Stock (CISPA Helmholtz Center for Information Security)

Read More

ROV++: Improved Deployable Defense against BGP Hijacking

Reynaldo Morillo (University of Connecticut), Justin Furuness (University of Connecticut), Cameron Morris (University of Connecticut), James Breslin (University of Connecticut), Amir Herzberg (University of Connecticut), Bing Wang (University of Connecticut)

Read More

The Nuts and Bolts of Building FlowLens

Diogo Barradas (Instituto Superior Técnico, Universidade de Lisboa)

Read More

Short Paper: Declarative Demand-Driven Reverse Engineering

Yihao Sun, Jeffrey Ching, Kristopher Micinski (Department of Electical Engineering and Computer Science, Syracuse University)

Read More