Virat Shejwalkar (UMass Amherst), Amir Houmansadr (UMass Amherst)

Federated learning (FL) enables many data owners (e.g., mobile devices) to train a joint ML model (e.g., a next-word prediction classifier) without the need of sharing their private training data.

However, FL is known to be susceptible to poisoning attacks by malicious participants (e.g., adversary-owned mobile devices) who aim at hampering the accuracy of the jointly trained model through sending malicious inputs during the federated training process.

In this paper, we present a generic framework for model poisoning attacks on FL. We show that our framework leads to poisoning attacks that substantially outperform state-of-the-art model poisoning attacks by large margins. For instance, our attacks result in $1.5times$ to $60times$ higher reductions in the accuracy of FL models compared to previously discovered poisoning attacks.

Our work demonstrates that existing Byzantine-robust FL algorithms are significantly more susceptible to model poisoning than previously thought. Motivated by this, we design a defense against FL poisoning, called emph{divide-and-conquer} (DnC). We demonstrate that DnC outperforms all existing Byzantine-robust FL algorithms in defeating model poisoning attacks,
specifically, it is $2.5times$ to $12times$ more resilient in our experiments with different datasets and models.

View More Papers

More than a Fair Share: Network Data Remanence Attacks...

Leila Rashidi (University of Calgary), Daniel Kostecki (Northeastern University), Alexander James (University of Calgary), Anthony Peterson (Northeastern University), Majid Ghaderi (University of Calgary), Samuel Jero (MIT Lincoln Laboratory), Cristina Nita-Rotaru (Northeastern University), Hamed Okhravi (MIT Lincoln Laboratory), Reihaneh Safavi-Naini (University of Calgary)

Read More

Data Analytics and Expert Judgment in Time of Crisis:...

Igor Linkov, PhD Senior Science and Technology Manager, US Army Engineer Research and Development Center; Senior Data Analyst (on detail), FEMA/HHS R1 COVID Task Force; Adjunct Professor, Carnegie Mellon University

Read More

FLTrust: Byzantine-robust Federated Learning via Trust Bootstrapping

Xiaoyu Cao (Duke University), Minghong Fang (The Ohio State University), Jia Liu (The Ohio State University), Neil Zhenqiang Gong (Duke University)

Read More

A First Look at Scams on YouTube

Elijah Bouma-Sims, Bradley Reaves (North Carolina State University)

Read More