Virat Shejwalkar (UMass Amherst), Amir Houmansadr (UMass Amherst)

Federated learning (FL) enables many data owners (e.g., mobile devices) to train a joint ML model (e.g., a next-word prediction classifier) without the need of sharing their private training data.

However, FL is known to be susceptible to poisoning attacks by malicious participants (e.g., adversary-owned mobile devices) who aim at hampering the accuracy of the jointly trained model through sending malicious inputs during the federated training process.

In this paper, we present a generic framework for model poisoning attacks on FL. We show that our framework leads to poisoning attacks that substantially outperform state-of-the-art model poisoning attacks by large margins. For instance, our attacks result in $1.5times$ to $60times$ higher reductions in the accuracy of FL models compared to previously discovered poisoning attacks.

Our work demonstrates that existing Byzantine-robust FL algorithms are significantly more susceptible to model poisoning than previously thought. Motivated by this, we design a defense against FL poisoning, called emph{divide-and-conquer} (DnC). We demonstrate that DnC outperforms all existing Byzantine-robust FL algorithms in defeating model poisoning attacks,
specifically, it is $2.5times$ to $12times$ more resilient in our experiments with different datasets and models.

View More Papers

JMPscare: Introspection for Binary-Only Fuzzing

Dominik Maier, Lukas Seidel (TU Berlin)

Read More

PHOENIX: Device-Centric Cellular Network Protocol Monitoring using Runtime Verification

Mitziu Echeverria (The University of Iowa), Zeeshan Ahmed (The University of Iowa), Bincheng Wang (The University of Iowa), M. Fareed Arif (The University of Iowa), Syed Rafiul Hussain (Pennsylvania State University), Omar Chowdhury (The University of Iowa)

Read More

QPEP: An Actionable Approach to Secure and Performant Broadband...

James Pavur (Oxford University), Martin Strohmeier (armasuisse), Vincent Lenders (armasuisse), Ivan Martinovic (Oxford University)

Read More

Ovid: Message-based Automatic Contact Tracing

Leonie Reichert and Samuel Brack (Humboldt University of Berlin); Björn Scheuermann (Humboldt-University of Berlin)

Read More