Chunjiang Che (The Hong Kong University of Science and Technology (Guangzhou)), Songze Li (Southeast University), Xuechao Wang (The Hong Kong University of Science and Technology (Guangzhou))

Bandwidth limitation is the major bottleneck that hinders scaling throughput of proof-of-work blockchains. To guarantee security, the mining rate of the blockchain is determined by the miners with the lowest bandwidth, resulting in an inefficient bandwidth utilization among fast miners. We propose Manifoldchain, an innovative blockchain sharding protocol that alleviates the impact of slow miners to maximize blockchain throughput. Manifoldchain utilizes a bandwidth-clustered shard formation mechanism that groups miners with similar bandwidths into the same shard. Consequently, this approach enables us to set an optimal mining rate for each shard based on its bandwidth, effectively reducing the waiting time caused by slow miners. Nevertheless, the adversary could corrupt miners with similar bandwidths, thereby concentrating hashing power and potentially creating an adversarial majority within a single shard. To counter this adversarial strategy, we introduce textit{sharing mining}, allowing the honest mining power of the entire network to participate in the secure ledger formation of each shard, thereby achieving the same level of security as an unsharded blockchain. Additionally, we introduce an asynchronous atomic commitment mechanism to ensure transaction atomicity across shards with various mining rates. Our theoretical analysis demonstrates that Manifoldchain scales linearly in throughput with the increase in shard numbers and inversely with network delay in each shard. We implement a full system prototype of Manifoldchain, comprehensively evaluated on both simulated and real-world testbeds. These experiments validate its vertical scalability with network bandwidth and horizontal scalability with network size, achieving a substantial improvement of 186% in throughput over baseline sharding protocols, for scenarios where bandwidths of miners range from 5Mbps to 60Mbps.

View More Papers

Oreo: Protecting ASLR Against Microarchitectural Attacks

Shixin Song (Massachusetts Institute of Technology), Joseph Zhang (Massachusetts Institute of Technology), Mengjia Yan (Massachusetts Institute of Technology)

Read More

Understanding Influences on SMS Phishing Detection: User Behavior, Demographics,...

Daniel Timko (California State University San Marcos), Daniel Hernandez Castillo (California State University San Marcos), Muhammad Lutfor Rahman (California State University San Marcos)

Read More

The Kids Are All Right: Investigating the Susceptibility of...

Elijah Bouma-Sims (Carnegie Mellon University), Lily Klucinec (Carnegie Mellon University), Mandy Lanyon (Carnegie Mellon University), Julie Downs (Carnegie Mellon University), Lorrie Faith Cranor (Carnegie Mellon University)

Read More

Crosstalk-induced Side Channel Threats in Multi-Tenant NISQ Computers

Ruixuan Li (Choudhury), Chaithanya Naik Mude (University of Wisconsin-Madison), Sanjay Das (The University of Texas at Dallas), Preetham Chandra Tikkireddi (University of Wisconsin-Madison), Swamit Tannu (University of Wisconsin, Madison), Kanad Basu (University of Texas at Dallas)

Read More