Chengkun Wei (Zhejiang University), Wenlong Meng (Zhejiang University), Zhikun Zhang (CISPA Helmholtz Center for Information Security and Stanford University), Min Chen (CISPA Helmholtz Center for Information Security), Minghu Zhao (Zhejiang University), Wenjing Fang (Ant Group), Lei Wang (Ant Group), Zihui Zhang (Zhejiang University), Wenzhi Chen (Zhejiang University)

*Prompt-tuning* has emerged as an attractive paradigm for deploying large-scale language models due to its strong downstream task performance and efficient multitask serving ability. Despite its wide adoption, we empirically show that prompt-tuning is vulnerable to downstream task-agnostic backdoors, which reside in the pretrained models and can affect arbitrary downstream tasks. The state-of-the-art backdoor detection approaches cannot defend against task-agnostic backdoors since they hardly converge in reversing the backdoor triggers. To address this issue, we propose LMSanitator, a novel approach for detecting and removing task-agnostic backdoors on Transformer models. Instead of directly inverting the triggers, LMSanitator aims to invert the *predefined attack vectors* (pretrained models' output when the input is embedded with triggers) of the task-agnostic backdoors, which achieves much better convergence performance and backdoor detection accuracy. LMSanitator further leverages prompt-tuning’s property of freezing the pretrained model to perform accurate and fast output monitoring and input purging during the inference phase. Extensive experiments on multiple language models and NLP tasks illustrate the effectiveness of LMSanitator. For instance, LMSanitator achieves 92.8% backdoor detection accuracy on 960 models and decreases the attack success rate to less than 1% in most scenarios.

View More Papers

Sticky Fingers: Resilience of Satellite Fingerprinting against Jamming Attacks

Joshua Smailes (University of Oxford), Edd Salkield (University of Oxford), Sebastian Köhler (University of Oxford), Simon Birnbach (University of Oxford), Martin Strohmeier (Cyber-Defence Campus, armasuisse S+T), Ivan Martinovic (University of Oxford)

Read More

EM Eye: Characterizing Electromagnetic Side-channel Eavesdropping on Embedded Cameras

Yan Long (University of Michigan), Qinhong Jiang (Zhejiang University), Chen Yan (Zhejiang University), Tobias Alam (University of Michigan), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University), Kevin Fu (Northeastern University)

Read More

Investigating the Impact of Evasion Attacks Against Automotive Intrusion...

Paolo Cerracchio, Stefano Longari, Michele Carminati, Stefano Zanero (Politecnico di Milano)

Read More

Low-Quality Training Data Only? A Robust Framework for Detecting...

Yuqi Qing (Tsinghua University), Qilei Yin (Zhongguancun Laboratory), Xinhao Deng (Tsinghua University), Yihao Chen (Tsinghua University), Zhuotao Liu (Tsinghua University), Kun Sun (George Mason University), Ke Xu (Tsinghua University), Jia Zhang (Tsinghua University), Qi Li (Tsinghua University)

Read More