Jack P. K. Ma (The Chinese University of Hong Kong), Raymond K. H. Tai (The Chinese University of Hong Kong), Yongjun Zhao (Nanyang Technological University), Sherman S.M. Chow (The Chinese University of Hong Kong)

Decision trees are popular machine-learning classification models due to their simplicity and effectiveness. Tai et al. (ESORICS '17) propose a privacy-preserving decision-tree evaluation protocol purely based on additive homomorphic encryption, without introducing dummy nodes for hiding the tree structure, but it runs a secure comparison for each decision node, resulting in linear complexity. Later protocols (DBSEC '18, PETS '19) achieve sublinear (client-side) complexity, yet the server-side path evaluation requires oblivious transfer among $2^d$ real and dummy nodes even for a sparse tree of depth $d$ to hide the tree structure.

This paper aims for the best of both worlds and hence the most lightweight protocol to date. Our complete-tree protocol can be easily extended to the sparse-tree setting and the reusable outsourcing setting: a model owner (resp. client) can outsource the decision tree (resp. attributes) to two non-colluding servers for classifications. The outsourced extension supports multi-client joint evaluation, which is the first of its kind without using multi-key fully-homomorphic encryption (TDSC '19). We also extend our protocol for achieving privacy against malicious adversaries.

Our experiments compare in various network settings our offline and online communication costs and the online computation time with the prior sublinear protocol of Tueno et al. (PETS '19) and $O(1)$-round linear protocols of Kiss et al. (PETS '19), which can be seen as garbled circuit variants of Tai et al.'s. Our protocols are shown to be desirable for IoT-like scenarios with weak clients and big-data scenarios with high-dimensional feature vectors.

View More Papers

ROV++: Improved Deployable Defense against BGP Hijacking

Reynaldo Morillo (University of Connecticut), Justin Furuness (University of Connecticut), Cameron Morris (University of Connecticut), James Breslin (University of Connecticut), Amir Herzberg (University of Connecticut), Bing Wang (University of Connecticut)

Read More

Differential Training: A Generic Framework to Reduce Label Noises...

Jiayun Xu (Singapore Management University), Yingjiu Li (University of Oregon), Robert H. Deng (Singapore Management University)

Read More

(Short) Object Removal Attacks on LiDAR-based 3D Object Detectors

Zhongyuan Hau, Kenneth Co, Soteris Demetriou, and Emil Lupu (Imperial College London) Best Short Paper Award Runner-up!

Read More

ALchemist: Fusing Application and Audit Logs for Precise Attack...

Le Yu (Purdue University), Shiqing Ma (Rutgers University), Zhuo Zhang (Purdue University), Guanhong Tao (Purdue University), Xiangyu Zhang (Purdue University), Dongyan Xu (Purdue University), Vincent E. Urias (Sandia National Laboratories), Han Wei Lin (Sandia National Laboratories), Gabriela Ciocarlie (SRI International), Vinod Yegneswaran (SRI International), Ashish Gehani (SRI International)

Read More