Mahdi Rahimi (KU Leuven), Piyush Kumar Sharma (University of Michigan), Claudia Diaz (KU Leuven)

Mixnets are a type of anonymous communication system designed to provide network privacy to users. They route client messages through multiple hops, with each hop (mix)
perturbing the traffic patterns, thus making message tracing difficult for a network adversary. However, privacy in mixnets comes at the cost of increased latency, limiting the applications
that are usable when accessed through a mixnet. In this work we present LAMP, a set of routing approaches tailored for minimizing the propagation latency in mixnets with minimal
impact on anonymity. The design of these approaches is grounded in practical deployment considerations making them lightweight, easy to integrate with existing deployed mixnets and computationally realistic. We evaluate the proposed approaches using latency data from the deployed Nym mixnet and demonstrate that LAMP can reduce latency by a factor of 7.5 (from 153.4ms to 20ms) while maintaining high anonymity. LAMP even outperforms the
state-of-the-art system LARMix, providing 3× better latency-anonymity tradeoffs and significantly reducing the computational overhead by ≈ 13900× in comparison to LARMix.

View More Papers

Provably Unlearnable Data Examples

Derui Wang (CSIRO's Data61), Minhui Xue (CSIRO's Data61), Bo Li (The University of Chicago), Seyit Camtepe (CSIRO's Data61), Liming Zhu (CSIRO's Data61)

Read More

LLM-xApp: A Large Language Model Empowered Radio Resource Management...

Xingqi Wu (University of Michigan-Dearborn), Junaid Farooq (University of Michigan-Dearborn), Yuhui Wang (University of Michigan-Dearborn), Juntao Chen (Fordham University)

Read More

mmProcess: Phase-Based Speech Reconstruction from mmWave Radar

Hyeongjun Choi, Young Eun Kwon, Ji Won Yoon (Korea University)

Read More