Dazhuang Liu (Delft University of Technology), Yanqi Qiao (Delft University of Technology), Rui Wang (Delft University of Technology), Kaitai Liang (Delft University of Technology), Georgios Smaragdakis (Delft University of Technology)

Current black-box backdoor attacks in convolutional neural networks formulate attack objective(s) as textit{single-objective} optimization problems in textit{single domain}.
Designing triggers in single domain harms semantics and trigger robustness as well as introduces visual and spectral anomaly.
This work proposes a multi-objective black-box backdoor attack in dual domains via evolutionary algorithm (LADDER), the first instance of achieving multiple attack objectives simultaneously by optimizing triggers without requiring prior knowledge about victim model.
In particular, we formulate LADDER as a multi-objective optimization problem (MOP) and solve it via multi-objective evolutionary algorithm (MOEA).
MOEA maintains a population of triggers with trade-offs among attack objectives and uses non-dominated sort to drive triggers toward optimal solutions.
We further apply preference-based selection to MOEA to exclude impractical triggers.
LADDER investigates a new dual-domain perspective for trigger stealthiness by minimizing the anomaly between clean and poisoned samples in the spectral domain.
Lastly, the robustness against preprocessing operations is achieved by pushing triggers to low-frequency regions.
Extensive experiments comprehensively showcase that LADDER achieves attack effectiveness of at least 99%, attack robustness with 90.23% (50.09% higher than state-of-the-art attacks on average), superior natural stealthiness (1.12$times$ to 196.74$times$ improvement) and excellent spectral stealthiness (8.45$times$ enhancement) as compared to current stealthy attacks by the average $l_2$-norm across 5 public datasets.

View More Papers

A Method to Facilitate Membership Inference Attacks in Deep...

Zitao Chen (University of British Columbia), Karthik Pattabiraman (University of British Columbia)

Read More

AlphaDog: No-Box Camouflage Attacks via Alpha Channel Oversight

Qi Xia (University of Texas at San Antonio), Qian Chen (University of Texas at San Antonio)

Read More

Ring of Gyges: Accountable Anonymous Broadcast via Secret-Shared Shuffle

Wentao Dong (City University of Hong Kong), Peipei Jiang (Wuhan University; City University of Hong Kong), Huayi Duan (ETH Zurich), Cong Wang (City University of Hong Kong), Lingchen Zhao (Wuhan University), Qian Wang (Wuhan University)

Read More

Alba: The Dawn of Scalable Bridges for Blockchains

Giulia Scaffino (TU Wien), Lukas Aumayr (TU Wien), Mahsa Bastankhah (Princeton University), Zeta Avarikioti (TU Wien), Matteo Maffei (TU Wien)

Read More