Taifeng Liu (Xidian University), Yang Liu (Xidian University), Zhuo Ma (Xidian University), Tong Yang (Peking University), Xinjing Liu (Xidian University), Teng Li (Xidian University), Jianfeng Ma (Xidian University)

The vision-based perception modules in autonomous vehicles (AVs) are prone to physical adversarial patch attacks. However, most existing attacks indiscriminately affect all passing vehicles. This paper introduces L-HAWK, a novel controllable physical adversarial patch activated by long-distance laser signals. L-HAWK is designed to target specific vehicles when the adversarial patch is triggered by laser signals while remaining benign under normal conditions. To achieve this goal and address the unique challenges associated with laser signals, we propose an asynchronous learning method for L-HAWK to determine the optimal laser parameters and the corresponding adversarial patch. To enhance the attack robustness in real-world scenarios, we introduce a multi-angle and multi-position simulation mechanism, a noise approximation approach, and a progressive sampling-based method. L-HAWK has been validated through extensive experiments in both digital and physical environments. Compared to a 59% success rate of TPatch (Usenix ’23) at 7 meters, L-HAWK achieves a 91.9% average attack success rate at 50 meters. This represents a 56% improvement in attack success rate and a more than sevenfold increase in attack distance.

View More Papers

Work-in-Progress: Towards Browser-Based Consent Management

Gayatri Priyadarsini Kancherla and Abhishek Bichhawat (Indian Institute of Technology Gandhinagar)

Read More

Work-in-Progress: Uncovering Dark Patterns: A Longitudinal Study of Cookie...

Zihan Qu (Johns Hopkins University), Xinyi Qu (University College London), Xin Shen, Zhen Liang, and Jianjia Yu (Johns Hopkins University)

Read More

Work-in-Progress: Detecting Browser-in-the-Browser Attacks from Their Behaviors and DOM...

Ryusei Ishikawa, Soramichi Akiyama, and Tetsutaro Uehara (Ritsumeikan University)

Read More

Understanding Influences on SMS Phishing Detection: User Behavior, Demographics,...

Daniel Timko (California State University San Marcos), Daniel Hernandez Castillo (California State University San Marcos), Muhammad Lutfor Rahman (California State University San Marcos)

Read More