Changming Liu (Northeastern University), Yaohui Chen (Facebook Inc.), Long Lu (Northeastern University)

Undefined Behavior bugs (UB) often refer to a wide range of programming errors that mainly reside in software implemented in relatively low-level programming languages e.g., C/C++. OS kernels are particularly plagued by UB due to their close interactions with the hardware. A triggered UB can often lead to exploitation from unprivileged userspace programs and cause critical security and reliability issues inside the OS. The previous works on detecting UB in kernels had to sacrifice precision for scalability, and in turn, suffered from extremely high false positives which severely impaired their usability.

We propose a novel static UB detector for Linux kernel, called KUBO which simultaneously achieves high precision and whole-kernel scalability. KUBO is focused on detecting critical UB that can be triggered by userspace input. The high precision comes from KUBO’s verification of the satisfiability of the UB-triggering paths and conditions. The whole-kernel scalability is enabled by an efficient inter-procedural analysis, which incrementally walks backward along callchains in an on-demand manner. We evaluate KUBO on several versions of whole Linux kernels (including drivers). KUBO found 23 critical UBs that were previously unknown in the latest Linux kernel. KUBO’s false detection rate is merely 27.5%, which is significantly lower than that of the state-of-the-art kernel UB detectors (91%). Our evaluation also shows the bug reports generated by KUBO are easy to triage.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 47 ) ) ) [post__not_in] => Array ( [0] => 6952 ) )

JMPscare: Introspection for Binary-Only Fuzzing

Dominik Maier, Lukas Seidel (TU Berlin)

Read More

FlowLens: Enabling Efficient Flow Classification for ML-based Network Security...

Diogo Barradas (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), Nuno Santos (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), Luis Rodrigues (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), Salvatore Signorello (LASIGE, Faculdade de Ciências, Universidade de Lisboa), Fernando M. V. Ramos (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), André Madeira (INESC-ID, Instituto Superior Técnico, Universidade de…

Read More

Demo #7: Automated Tracking System For LiDAR Spoofing Attacks...

Yulong Cao, Jiaxiang Ma, Kevin Fu (University of Michigan), Sara Rampazzi (University of Florida), and Z. Morley Mao (University of Michigan) Best Demo Award Runner-up ($200 cash prize)!

Read More

RandRunner: Distributed Randomness from Trapdoor VDFs with Strong Uniqueness

Philipp Schindler (SBA Research), Aljosha Judmayer (SBA Research), Markus Hittmeir (SBA Research), Nicholas Stifter (SBA Research, TU Wien), Edgar Weippl (Universität Wien)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)