Yizhong Liu (Beihang University), Andi Liu (Beihang University), Yuan Lu (Institute of Software Chinese Academy of Sciences), Zhuocheng Pan (Beihang University), Yinuo Li (Xi’an Jiaotong University), Jianwei Liu (Beihang University), Song Bian (Beihang University), Mauro Conti (University of Padua)

Sharding enhances blockchain scalability by dividing the network into shards, each managing specific unspent transaction outputs or accounts. As an introduced new transaction type, cross-shard transactions pose a critical challenge to the security and efficiency of sharding blockchains.
Currently, there is a lack of a generic sharding blockchain consensus pattern that achieves both security and low overhead.

In this paper, we present Kronos, a secure sharding blockchain consensus achieving optimized overhead.
In particular, we propose a new textit{secure sharding blockchain consensus pattern}, based on a textit{buffer} managed jointly by shard members. Valid transactions are transferred to the payee via the buffer, while invalid ones are rejected through happy or unhappy paths.
Kronos is proved to achieve textit{security} textit{with atomicity} under malicious clients while maintaining textit{optimal intra-shard overhead}. Efficient rejection even requires no Byzantine fault tolerance (BFT) protocol execution in happy paths, and the cost in unhappy paths is still not higher than a two-phase commit.
Besides, we propose secure cross-shard certification methods. Handling $b$ transactions, Kronos is proved to achieve cross-shard communication with low textit{cross-shard overhead} $mathcal{O}(n b lambda)$ ($n$ for the shard size and $lambda$ for the security parameter).
Notably, Kronos imposes no restrictions on BFT and does not rely on timing assumptions, offering optional constructions in various modules. Kronos could serve as a universal framework for enhancing the performance and scalability of existing BFT protocols. Kronos supports generic models, including asynchronous networks, and can increase the throughput by several orders of magnitude.

We implement Kronos using two prominent BFT protocols: asynchronous Speeding Dumbo (NDSS'22) and partially synchronous Hotstuff (PODC'19). Extensive experiments (over up to 1000 AWS EC2 nodes across 4 AWS regions) demonstrate Kronos scales the consensus nodes to thousands, achieving a substantial throughput of 320 ktx/sec with 2.0 sec latency. Compared with the past solutions, Kronos outperforms, achieving up to a 12$times$ improvement in throughput and a 50% reduction in latency when cross-shard transactions dominate the workload.

View More Papers

Secure Transformer Inference Made Non-interactive

Jiawen Zhang (Zhejiang University), Xinpeng Yang (Zhejiang University), Lipeng He (University of Waterloo), Kejia Chen (Zhejiang University), Wen-jie Lu (Zhejiang University), Yinghao Wang (Zhejiang University), Xiaoyang Hou (Zhejiang University), Jian Liu (Zhejiang University), Kui Ren (Zhejiang University), Xiaohu Yang (Zhejiang University)

Read More

Exploring User Perceptions of Security Auditing in the Web3...

Molly Zhuangtong Huang (University of Macau), Rui Jiang (University of Macau), Tanusree Sharma (Pennsylvania State University), Kanye Ye Wang (University of Macau)

Read More

WAVEN: WebAssembly Memory Virtualization for Enclaves

Weili Wang (Southern University of Science and Technology), Honghan Ji (ByteDance Inc.), Peixuan He (ByteDance Inc.), Yao Zhang (ByteDance Inc.), Ye Wu (ByteDance Inc.), Yinqian Zhang (Southern University of Science and Technology)

Read More

Work-in-Progress: Uncovering Dark Patterns: A Longitudinal Study of Cookie...

Zihan Qu (Johns Hopkins University), Xinyi Qu (University College London), Xin Shen, Zhen Liang, and Jianjia Yu (Johns Hopkins University)

Read More