Z. Berkay Celik (Penn State University), Gang Tan (Penn State University), Patrick McDaniel (Penn State University)

Broadly defined as the Internet of Things (IoT), the growth of commodity devices that integrate physical processes with digital connectivity has changed the way we live, play, and work. To date, the traditional approach to securing IoT has treated devices individually. However, in practice, it has been recently shown that the interactions among devices are often the real cause of safety and security violations. In this paper, we present IoTGuard, a dynamic, policy-based enforcement system for IoT, which protects users from unsafe and insecure device states by monitoring the behavior of IoT and trigger-action platform apps. IoTGuard operates in three phases: (a) implementation of a code instrumentor that adds extra logic to an app's source code to collect app's information at runtime, (b) storing the apps' information in a dynamic model that represents the runtime execution behavior of apps, and (c) identifying IoT safety and security policies, and enforcing relevant policies on the dynamic model of individual apps or sets of interacting apps. We demonstrate IoTGuard on 20 flawed apps and find that IoTGuard correctly enforces 12 of the 12 policy violations. In addition, we evaluate IoTGuard on 35 SmartThings IoT and 30 IFTTT trigger-action platform market apps executed in a simulated smart home. IoTGuard enforces 11 unique policies and blocks 16 states in six (17.1%) SmartThings and five (16.6%) IFTTT apps. IoTGuard imposes only 17.3% runtime overhead on an app and 19.8% for five interacting apps. Through this effort, we introduce a rigorously grounded system for enforcing correct operation of IoT devices through systematically identified IoT policies, demonstrating the effectiveness and value of monitoring IoT apps with tools such as IoTGuard.

View More Papers

CRCount: Pointer Invalidation with Reference Counting to Mitigate Use-after-free...

Jangseop Shin (Seoul National University and Inter-University Semiconductor Research Center), Donghyun Kwon (Seoul National University and Inter-University Semiconductor Research Center), Jiwon Seo (Seoul National University and Inter-University Semiconductor Research Center), Yeongpil Cho (Soongsil University), Yunheung Paek (Seoul National University and Inter-University Semiconductor Research Center)

Read More

Statistical Privacy for Streaming Traffic

Xiaokuan Zhang (The Ohio State University), Jihun Hamm (The Ohio State University), Michael K. Reiter (University of North Carolina at Chapel Hill), Yinqian Zhang (The Ohio State University)

Read More

Cybercriminal Minds: An investigative study of cryptocurrency abuses in...

Seunghyeon Lee (KAIST, S2W LAB Inc.), Changhoon Yoon (S2W LAB Inc.), Heedo Kang (KAIST), Yeonkeun Kim (KAIST), Yongdae Kim (KAIST), Dongsu Han (KAIST), Sooel Son (KAIST), Seungwon Shin (KAIST, S2W LAB Inc.)

Read More

PeriScope: An Effective Probing and Fuzzing Framework for the...

Dokyung Song (University of California, Irvine), Felicitas Hetzelt (Technical University of Berlin), Dipanjan Das (University of California, Santa Barbara), Chad Spensky (University of California, Santa Barbara), Yeoul Na (University of California, Irvine), Stijn Volckaert (University of California, Irvine and KU Leuven), Giovanni Vigna (University of California, Santa Barbara), Christopher Kruegel (University of California, Santa Barbara),…

Read More