Z. Berkay Celik (Penn State University), Gang Tan (Penn State University), Patrick McDaniel (Penn State University)

Broadly defined as the Internet of Things (IoT), the growth of commodity devices that integrate physical processes with digital connectivity has changed the way we live, play, and work. To date, the traditional approach to securing IoT has treated devices individually. However, in practice, it has been recently shown that the interactions among devices are often the real cause of safety and security violations. In this paper, we present IoTGuard, a dynamic, policy-based enforcement system for IoT, which protects users from unsafe and insecure device states by monitoring the behavior of IoT and trigger-action platform apps. IoTGuard operates in three phases: (a) implementation of a code instrumentor that adds extra logic to an app's source code to collect app's information at runtime, (b) storing the apps' information in a dynamic model that represents the runtime execution behavior of apps, and (c) identifying IoT safety and security policies, and enforcing relevant policies on the dynamic model of individual apps or sets of interacting apps. We demonstrate IoTGuard on 20 flawed apps and find that IoTGuard correctly enforces 12 of the 12 policy violations. In addition, we evaluate IoTGuard on 35 SmartThings IoT and 30 IFTTT trigger-action platform market apps executed in a simulated smart home. IoTGuard enforces 11 unique policies and blocks 16 states in six (17.1%) SmartThings and five (16.6%) IFTTT apps. IoTGuard imposes only 17.3% runtime overhead on an app and 19.8% for five interacting apps. Through this effort, we introduce a rigorously grounded system for enforcing correct operation of IoT devices through systematically identified IoT policies, demonstrating the effectiveness and value of monitoring IoT apps with tools such as IoTGuard.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 34 ) ) ) [post__not_in] => Array ( [0] => 4546 ) )

Privacy Attacks to the 4G and 5G Cellular Paging...

Syed Rafiul Hussain (Purdue University), Mitziu Echeverria (University of Iowa), Omar Chowdhury (University of Iowa), Ninghui Li (Purdue University), Elisa Bertino (Purdue University)

Read More

Distinguishing Attacks from Legitimate Authentication Traffic at Scale

Cormac Herley (Microsoft), Stuart Schechter (Unaffiliated)

Read More

RFDIDS: Radio Frequency-based Distributed Intrusion Detection System for the...

Tohid Shekari (ECE, Georgia Tech), Christian Bayens (ECE, Georgia Tech), Morris Cohen (ECE, Georgia Tech), Lukas Graber (ECE, Georgia Tech), Raheem Beyah (ECE, Georgia Tech)

Read More

A Treasury System for Cryptocurrencies: Enabling Better Collaborative Intelligence

Bingsheng Zhang (Lancaster University), Roman Oliynykov (IOHK Ltd.), Hamed Balogun (Lancaster University)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)