Shuguang Wang (City University of Hong Kong), Qian Zhou (City University of Hong Kong), Kui Wu (University of Victoria), Jinghuai Deng (City University of Hong Kong), Dapeng Wu (City University of Hong Kong), Wei-Bin Lee (Information Security Center, Hon Hai Research Institute), Jianping Wang (City University of Hong Kong)

Autonomous driving systems (ADS) heavily depend on multi-sensor fusion (MSF) perception systems to process sensor data and improve the accuracy of environmental perception. However, MSF cannot completely eliminate uncertainties, and faults in multiple modules will lead to perception failures. Thus, identifying the root causes of these perception failures is crucial to ensure the reliability of MSF perception systems. Traditional methods for identifying perception failures, such as anomaly detection and runtime monitoring, are limited because they do not account for causal relationships between faults in multiple modules and overall system failure. To overcome these limitations, we propose a novel approach called interventional root cause analysis (IRCA). IRCA leverages the directed acyclic graph (DAG) structure of MSF to develop a hierarchical structural causal model (H-SCM), which effectively addresses the complexities of causal relationships. Our approach uses a divide-and-conquer pruning algorithm to encompass multiple causal modules within a causal path and to pinpoint intervention targets. We implement IRCA and evaluate its performance using real fault scenarios and synthetic scenarios with injected faults in the ADS Autoware. The average F1-score of IRCA in real fault scenarios is over $95%$. We also illustrate the effectiveness of IRCA on an autonomous vehicle testbed equipped with Autoware, as well as a cross-platform evaluation using Apollo. The results show that IRCA can efficiently identify the causal paths leading to failures and significantly enhance the safety of ADS.

View More Papers

The Kids Are All Right: Investigating the Susceptibility of...

Elijah Bouma-Sims (Carnegie Mellon University), Lily Klucinec (Carnegie Mellon University), Mandy Lanyon (Carnegie Mellon University), Julie Downs (Carnegie Mellon University), Lorrie Faith Cranor (Carnegie Mellon University)

Read More

RadSee: See Your Handwriting Through Walls Using FMCW Radar

Shichen Zhang (Michigan State University), Qijun Wang (Michigan State University), Maolin Gan (Michigan State University), Zhichao Cao (Michigan State University), Huacheng Zeng (Michigan State University)

Read More

”Who is Trying to Access My Account?” Exploring User...

Tongxin Wei (Nankai University), Ding Wang (Nankai University), Yutong Li (Nankai University), Yuehuan Wang (Nankai University)

Read More

Privacy Preserved Integrated Big Data Analytics Framework Using Federated...

Sarah Kaleem (Prince Sultan University, PSU) Awais Ahmad (Imam Mohammad Ibn Saud Islamic University, IMSIU), Muhammad Babar (Prince Sultan University, PSU), Goutham Reddy Alavalapati (University of Illinois, Springfield)

Read More