Peng Huang (Zhejiang University), Yao Wei (Zhejiang University), Peng Cheng (Zhejiang University), Zhongjie Ba (Zhejiang University), Li Lu (Zhejiang University), Feng Lin (Zhejiang University), Fan Zhang (Zhejiang University), Kui Ren (Zhejiang University)

With the wide deployment of microphone-equipped smart devices, more and more users have concerns that their voices would be secretly recorded. Recent studies show that microphones have nonlinearity and can be jammed by inaudible ultrasound, which leads to the emergence of ultrasonic-based anti-eavesdropping research. However, existing solutions are implemented through energetic masking and require high energy to disturb human voice. Since ultrasonic noise can only remain inaudible at limited energy, such noise can merely cover a short distance and can be easily removed by adversaries, which makes these solutions impractical. In this paper, we explore the idea of informational masking, study the transmission and coverage constraints of ultrasonic jamming, and implement a highly effective anti-eavesdropping system, named InfoMasker. Specifically, we design a phoneme-based noise that is robust against denoising methods and can effectively prevent both humans and machines from understanding the jammed signals. We optimize the ultrasonic transmission method to achieve higher transmission energy and lower signal distortion, then implement a prototype of our system. Experimental results show that InfoMasker can effectively reduce the accuracy of all tested speech recognition systems to below 50% even at low energies (SNR=0), which is much better than existing noise designs.

View More Papers

BEAGLE: Forensics of Deep Learning Backdoor Attack for Better...

Siyuan Cheng (Purdue University), Guanhong Tao (Purdue University), Yingqi Liu (Purdue University), Shengwei An (Purdue University), Xiangzhe Xu (Purdue University), Shiwei Feng (Purdue University), Guangyu Shen (Purdue University), Kaiyuan Zhang (Purdue University), Qiuling Xu (Purdue University), Shiqing Ma (Rutgers University), Xiangyu Zhang (Purdue University)

Read More

Assessing the Impact of Interface Vulnerabilities in Compartmentalized Software

Hugo Lefeuvre (The University of Manchester), Vlad-Andrei Bădoiu (University Politehnica of Bucharest), Yi Chen (Rice University), Felipe Huici (Unikraft.io), Nathan Dautenhahn (Rice University), Pierre Olivier (The University of Manchester)

Read More

Reminding Drivers of the Stalking Vehicles on the Road

Wei Sun, Kannan Srinivsan (The Ohio State University)

Read More

Unlocking the Potential of Domain Aware Binary Analysis in...

Dr. Zhiqiang Lin (Distinguished Professor of Engineering at The Ohio State University)

Read More