David Rupprecht (Ruhr University Bochum), Katharina Kohls (Ruhr University Bochum), Thorsten Holz (Ruhr University Bochum), Christina Poepper (NYU Abu Dhabi)

Long Term Evolution (LTE/4G) establishes mutual authentication with a provably secure Authentication and Key Agreement protocol on layer three of the network stack. Permanent integrity protection of the control plane safeguards the traffic against manipulations. However, missing integrity protection of the user plane still allows an adversary to manipulate and redirect IP packets, as recently demonstrated.

In this work, we introduce a novel cross-layer attack that exploits the existing vulnerability on layer two and extends it with an attack mechanism on layer three. More precisely, we take advantage of the default IP stack behavior of operating systems, which allows an active attacker to impersonate a user towards the network and vice versa; we name these attacks IMP4GT (IMPersonation attacks in 4G neTworks). In contrast to a simple redirection attack as demonstrated in prior work, our attack dramatically extends the possible attack scenarios and thus emphasizes the need for user plane integrity protection in mobile communication standards. The results of our work imply that providers can no longer rely on mutual authentication for billing, access control, and legal prosecution. On the other side, users are exposed to any incoming IP connection as an adversary can bypass the provider's firewall. To demonstrate the practical impact of our attack, we conduct two IMP4GT attack variants in a commercial network, which---for the first time---completely break the mutual authentication aim of LTE on the user plane in a real-world setting.

View More Papers

Unicorn: Runtime Provenance-Based Detector for Advanced Persistent Threats

Xueyuan Han (Harvard University), Thomas Pasquier (University of Bristol), Adam Bates (University of Illinois at Urbana-Champaign), James Mickens (Harvard University), Margo Seltzer (University of British Columbia)

Read More

Precisely Characterizing Security Impact in a Flood of Patches...

Qiushi Wu (University of Minnesota), Yang He (University of Minnesota), Stephen McCamant (University of Minnesota), Kangjie Lu (University of Minnesota)

Read More

MACAO: A Maliciously-Secure and Client-Efficient Active ORAM Framework

Thang Hoang (University of South Florida), Jorge Guajardo (Robert Bosch Research and Technology Center), Attila Yavuz (University of South Florida)

Read More

DISCO: Sidestepping RPKI's Deployment Barriers

Tomas Hlavacek (Fraunhofer SIT), Italo Cunha (Universidade Federal de Minas Gerais), Yossi Gilad (Hebrew University of Jerusalem), Amir Herzberg (University of Connecticut), Ethan Katz-Bassett (Columbia University), Michael Schapira (Hebrew University of Jerusalem), Haya Shulman (Fraunhofer SIT)

Read More