Fatemeh Arkannezhad (UCLA), Justin Feng (UCLA), Nader Sehatbakhsh (UCLA)

Remote attestation has received much attention recently due to the proliferation of embedded and IoT devices. Among various solutions, methods based on hardware-software co-design (hybrid) are particularly popular due to their low overhead yet effective approaches. Despite their usefulness, hybrid methods still suffer from multiple limitations such as strict protections required for the attestation keys and restrictive operation and threat models such as disabling interrupts and neglecting time-of-check-time-of-use (TOCTOU) attacks.

In this paper, we propose a new hybrid attestation method called IDA, which removes the requirement for disabling interrupts and restrictive access control for the secret key and attestation code, thus improving the system's overall security and flexibility. Rather than making use of a secret key to calculate the response, IDA verifies the attestation process with trusted hardware monitoring and certifies its authenticity only if it was followed precisely. Further, to prevent TOCTOU attacks and handle interrupts, we propose IDA+, which monitors program memory between attestation requests or during interrupts and informs the verifier of changes to the program memory. We implement and evaluate IDA and IDA+ on open-source MSP430 architecture, showing a reasonable overhead in terms of runtime, memory footprint, and hardware overhead while being robust against various attack scenarios. Comparing our method with the state-of-the-art, we show that it has minimal overhead while achieving important new properties such as support for interrupts and DMA requests and detecting TOCTOU attacks.

View More Papers

CAN-MIRGU: A Comprehensive CAN Bus Attack Dataset from Moving...

Sampath Rajapaksha, Harsha Kalutarage (Robert Gordon University, UK), Garikayi Madzudzo (Horiba Mira Ltd, UK), Andrei Petrovski (Robert Gordon University, UK), M.Omar Al-Kadri (University of Doha for Science and Technology)

Read More

WIP: Adversarial Retroreflective Patches: A Novel Stealthy Attack on...

Go Tsuruoka (Waseda University), Takami Sato, Qi Alfred Chen (University of California, Irvine), Kazuki Nomoto, Ryunosuke Kobayashi, Yuna Tanaka (Waseda University), Tatsuya Mori (Waseda University/NICT/RIKEN)

Read More

Measuring the Prevalence of Password Manager Issues Using In-Situ...

Adryana Hutchinson (The George Washington University), Jinwei Tang (Clark University), Adam Aviv (The George Washington University), Peter Story (Clark University)

Read More

Secret-Shared Shuffle with Malicious Security

Xiangfu Song (National University of Singapore), Dong Yin (Ant Group), Jianli Bai (The University of Auckland), Changyu Dong (Guangzhou University), Ee-Chien Chang (National University of Singapore)

Read More