Ke Coby Wang (UNC Chapel Hill), Michael K. Reiter (UNC Chapel Hill)

We present a framework by which websites can coordinate to make it difficult for users to set similar passwords at these websites, in an effort to break the culture of password reuse on the web today.
Though the design of such a framework is fraught with risks to users’ security and privacy, we show that these risks can be effectively mitigated through careful scoping of the goals for such a framework and through principled design. At the core of our framework is a private set-membership-test protocol that enables one website to determine, upon a user setting a password for use at it, whether that user has already set a similar password at another participating website, but with neither side disclosing to the other the password(s) it employs in the protocol. Our framework then layers over this protocol a collection of techniques to mitigate the leakage necessitated by such a test. We verify via probabilistic model checking that these techniques are effective in maintaining account security, and since these mechanisms are consistent with common user experience today, our framework should be unobtrusive to users who do not reuse similar passwords across websites (e.g., due to having adopted a password manager). Through a working implementation of our framework and optimization of its parameters based on insights of how passwords tend to be reused, we show that our design can meet the scalability challenges facing such a service.

View More Papers

Countering Malicious Processes with Process-DNS Association

Suphannee Sivakorn (Columbia University), Kangkook Jee (NEC Labs America), Yixin Sun (Princeton University), Lauri Korts-Pärn (Cyber Defense Institute), Zhichun Li (NEC Labs America), Cristian Lumezanu (NEC Labs America), Zhenyu Wu (NEC Labs America), Lu-An Tang (NEC Labs America), Ding Li (NEC Labs America)

Read More

YODA: Enabling computationally intensive contracts on blockchains with Byzantine...

Sourav Das (Department of Computer Science and Engineering, Indian Institute of Technology Delhi), Vinay Joseph Ribeiro (Department of Computer Science and Engineering, Indian Institute of Technology Delhi), Abhijeet Anand (Department of Computer Science and Engineering, Indian Institute of Technology Delhi)

Read More

CodeAlchemist: Semantics-Aware Code Generation to Find Vulnerabilities in JavaScript...

HyungSeok Han (KAIST), DongHyeon Oh (KAIST), Sang Kil Cha (KAIST)

Read More

Fine-Grained and Controlled Rewriting in Blockchains: Chameleon-Hashing Gone Attribute-Based

David Derler (DFINITY), Kai Samelin (TÜV Rheinland i-sec GmbH), Daniel Slamanig (AIT Austrian Institute of Technology), Christoph Striecks (AIT Austrian Institute of Technology)

Read More