Ke Coby Wang (UNC Chapel Hill), Michael K. Reiter (UNC Chapel Hill)

We present a framework by which websites can coordinate to make it difficult for users to set similar passwords at these websites, in an effort to break the culture of password reuse on the web today.
Though the design of such a framework is fraught with risks to users’ security and privacy, we show that these risks can be effectively mitigated through careful scoping of the goals for such a framework and through principled design. At the core of our framework is a private set-membership-test protocol that enables one website to determine, upon a user setting a password for use at it, whether that user has already set a similar password at another participating website, but with neither side disclosing to the other the password(s) it employs in the protocol. Our framework then layers over this protocol a collection of techniques to mitigate the leakage necessitated by such a test. We verify via probabilistic model checking that these techniques are effective in maintaining account security, and since these mechanisms are consistent with common user experience today, our framework should be unobtrusive to users who do not reuse similar passwords across websites (e.g., due to having adopted a password manager). Through a working implementation of our framework and optimization of its parameters based on insights of how passwords tend to be reused, we show that our design can meet the scalability challenges facing such a service.

View More Papers

REDQUEEN: Fuzzing with Input-to-State Correspondence

Cornelius Aschermann (Ruhr-Universität Bochum), Sergej Schumilo (Ruhr-Universität Bochum), Tim Blazytko (Ruhr-Universität Bochum), Robert Gawlik (Ruhr-Universität Bochum), Thorsten Holz (Ruhr-Universität Bochum)

Read More

RFDIDS: Radio Frequency-based Distributed Intrusion Detection System for the...

Tohid Shekari (ECE, Georgia Tech), Christian Bayens (ECE, Georgia Tech), Morris Cohen (ECE, Georgia Tech), Lukas Graber (ECE, Georgia Tech), Raheem Beyah (ECE, Georgia Tech)

Read More

Oligo-Snoop: A Non-Invasive Side Channel Attack Against DNA Synthesis...

Sina Faezi (University of California, Irvine), Sujit Rokka Chhetri (University of California, Irvine), Arnav Vaibhav Malawade (University of California, Irvine), John Charles Chaput (University of California, Irvine), William Grover (University of California, Riverside), Philip Brisk (University of California, Riverside), Mohammad Abdullah Al Faruque (University of California, Irvine)

Read More

NoDoze: Combatting Threat Alert Fatigue with Automated Provenance Triage

Wajih Ul Hassan (NEC Laboratories America, Inc.; University of Illinois at Urbana–Champaign), Shengjian Guo (Virginia Tech), Ding Li (NEC Laboratories America, Inc.), Zhengzhang Chen (NEC Laboratories America, Inc.), Kangkook Jee (NEC Laboratories America, Inc.), Zhichun Li (NEC Laboratories America, Inc.), Adam Bates (University of Illinois at Urbana–Champaign)

Read More