Theodor Schnitzler (Research Center Trustworthy Data Science and Security, TU Dortmund, and Ruhr-Universität Bochum), Katharina Kohls (Radboud University), Evangelos Bitsikas (Northeastern University and New York University Abu Dhabi), Christina Pöpper (New York University Abu Dhabi)

Mobile instant messengers such as WhatsApp use delivery status notifications in order to inform users if a sent message has successfully reached its destination. This is useful and important information for the sender due to the often asynchronous use of the messenger service. However, as we demonstrate in this paper, this standard feature opens up a timing side channel with unexpected consequences for user location privacy. We investigate this threat conceptually and experimentally for three widely spread instant messengers. We validate that this information leak even exists in privacy-friendly messengers such as Signal and Threema.

Our results show that, after a training phase, a messenger user can distinguish different locations of the message receiver. Our analyses involving multiple rounds of measurements and evaluations show that the timing side channel persists independent of distances between receiver locations -- the attack works both for receivers in different countries as well as at small scale in one city. For instance, out of three locations within the same city, the sender can determine the correct one with more than 80% accuracy. Thus, messenger users can secretly spy on each others' whereabouts when sending instant messages. As our countermeasure evaluation shows, messenger providers could effectively disable the timing side channel by randomly delaying delivery confirmations within the range of a few seconds. For users themselves, the threat is harder to prevent since there is no option to turn off delivery confirmations.

View More Papers

coucouArray ( [post_type] => ndss-paper [post_status] => publish [posts_per_page] => 4 [orderby] => rand [tax_query] => Array ( [0] => Array ( [taxonomy] => category [field] => id [terms] => Array ( [0] => 66 ) ) ) [post__not_in] => Array ( [0] => 13171 ) )

Unlocking the Potential of Domain Aware Binary Analysis in...

Dr. Zhiqiang Lin (Distinguished Professor of Engineering at The Ohio State University)

Read More

Security Awareness Training through Experiencing the Adversarial Mindset

Jens Christian Dalgaard, Niek A. Janssen, Oksana Kulyuk, Carsten Schurmann (IT University of Copenhagen)

Read More

RAI2: Responsible Identity Audit Governing the Artificial Intelligence

Tian Dong (Shanghai Jiao Tong University), Shaofeng Li (Shanghai Jiao Tong University), Guoxing Chen (Shanghai Jiao Tong University), Minhui Xue (CSIRO's Data61), Haojin Zhu (Shanghai Jiao Tong University), Zhen Liu (Shanghai Jiao Tong University)

Read More

Folk Models of Misinformation on Social Media

Filipo Sharevski (DePaul University), Amy Devine (DePaul University), Emma Pieroni (DePaul University), Peter Jachim (DePaul University)

Read More

Privacy Starts with UI: Privacy Patterns and Designer Perspectives in UI/UX Practice

Anxhela Maloku (Technical University of Munich), Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Florian Matthes (Technical University of Munich)

Vision: Profiling Human Attackers: Personality and Behavioral Patterns in Deceptive Multi-Stage CTF Challenges

Khalid Alasiri (School of Computing and Augmented Intelligence Arizona State University), Rakibul Hasan (School of Computing and Augmented Intelligence Arizona State University)

From Underground to Mainstream Marketplaces: Measuring AI-Enabled NSFW Deepfakes on Fiverr

Mohamed Moustafa Dawoud (University of California, Santa Cruz), Alejandro Cuevas (Princeton University), Ram Sundara Raman (University of California, Santa Cruz)