Runze Zhang (Georgia Institute of Technology), Mingxuan Yao (Georgia Institute of Technology), Haichuan Xu (Georgia Institute of Technology), Omar Alrawi (Georgia Institute of Technology), Jeman Park (Kyung Hee University), Brendan Saltaformaggio (Georgia Institute of Technology)

For decades, law enforcement and commercial entities have attempted botnet takedowns with mixed success. These efforts, relying on DNS sink-holing or seizing C&C infrastructure, require months of preparation and often omit the cleanup of left-over infected machines. This allows botnet operators to push updates to the bots and re-establish their control. In this paper, we expand the goal of malware takedowns to include the covert and timely removal of frontend bots from infected devices. Specifically, this work proposes seizing the malware's built-in update mechanism to distribute crafted remediation payloads. Our research aims to enable this necessary but challenging remediation step after obtaining legal permission. We developed ECHO, an automated malware forensics pipeline that extracts payload deployment routines and generates remediation payloads to disable or remove the frontend bots on infected devices. Our study of 702 Android malware shows that 523 malware can be remediated via ECHO's takedown approach, ranging from covertly warning users about malware infection to uninstalling the malware.

View More Papers

Automated Expansion of Privacy Data Taxonomy for Compliant Data...

Yue Qin (Indiana University Bloomington & Central University of Finance and Economics), Yue Xiao (Indiana University Bloomington & IBM Research), Xiaojing Liao (Indiana University Bloomington)

Read More

CounterSEVeillance: Performance-Counter Attacks on AMD SEV-SNP

Stefan Gast (Graz University of Technology), Hannes Weissteiner (Graz University of Technology), Robin Leander Schröder (Fraunhofer SIT, Darmstadt, Germany and Fraunhofer Austria, Vienna, Austria), Daniel Gruss (Graz University of Technology)

Read More

Off-Path TCP Hijacking in Wi-Fi Networks: A Packet-Size Side...

Ziqiang Wang (Southeast University), Xuewei Feng (Tsinghua University), Qi Li (Tsinghua University), Kun Sun (George Mason University), Yuxiang Yang (Tsinghua University), Mengyuan Li (University of Toronto), Ganqiu Du (China Software Testing Center), Ke Xu (Tsinghua University), Jianping Wu (Tsinghua University)

Read More

Power-Related Side-Channel Attacks using the Android Sensor Framework

Mathias Oberhuber (Graz University of Technology), Martin Unterguggenberger (Graz University of Technology), Lukas Maar (Graz University of Technology), Andreas Kogler (Graz University of Technology), Stefan Mangard (Graz University of Technology)

Read More