Shujiang Wu (Johns Hopkins University), Pengfei Sun (F5, Inc.), Yao Zhao (F5, Inc.), Yinzhi Cao (Johns Hopkins University)

Browser fingerprints, while traditionally being used for web tracking, have recently been adopted more and more often for defense or detection of various attacks targeting real-world websites. Faced with these situations, adversaries also upgrade their weapons to generate their own fingerprints---defined as adversarial fingerprints---to bypass existing defense or detection. Naturally, such adversarial fingerprints are different from benign ones from user browsers because they are generated intentionally for defense bypass. However, no prior works have studied such differences in the wild by comparing adversarial with benign fingerprints let alone how adversarial fingerprints are generated.

In this paper, we present the first billion-scale measurement study of browser fingerprints collected from 14 major commercial websites (all ranked among Alexa/Tranco top 10,000). We further classify these fingerprints into either adversarial or benign using a learning-based, feedback-driven fraud and bot detection system from a major security company, and then study their differences. Our results draw three major observations: (i) adversarial fingerprints are significantly different from benign ones in many metrics, e.g., entropy, unique rate, and evolution speed, (ii) adversaries are adopting various tools and strategies to generate adversarial fingerprints, and (iii) adversarial fingerprints vary across different attack types, e.g., from content scraping to fraud transactions.

View More Papers

The Walls Have Ears: Gauging Security Awareness in a...

Gokul Jayakrishnan, Vijayanand Banahatti, Sachin Lodha (TCS Research Tata Consultancy Services Ltd.)

Read More

Focusing on Pinocchio's Nose: A Gradients Scrutinizer to Thwart...

Jiayun Fu (Huazhong University of Science and Technology), Xiaojing Ma (Huazhong University of Science and Technology), Bin B. Zhu (Microsoft Research Asia), Pingyi Hu (Huazhong University of Science and Technology), Ruixin Zhao (Huazhong University of Science and Technology), Yaru Jia (Huazhong University of Science and Technology), Peng Xu (Huazhong University of Science and Technology), Hai…

Read More

podft: On Accelerating Dynamic Taint Analysis with Precise Path...

Zhiyou Tian (Xidian University), Cong Sun (Xidian University), Dongrui Zeng (Palo Alto Networks), Gang Tan (Pennsylvania State University)

Read More

Securing Federated Sensitive Topic Classification against Poisoning Attacks

Tianyue Chu (IMDEA Networks Institute), Alvaro Garcia-Recuero (IMDEA Networks Institute), Costas Iordanou (Cyprus University of Technology), Georgios Smaragdakis (TU Delft), Nikolaos Laoutaris (IMDEA Networks Institute)

Read More