Haoqiang Wang, Yiwei Fang (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences; Indiana University Bloomington), Yichen Liu (Indiana University Bloomington), Ze Jin (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences; Indiana University Bloomington), Emma Delph (Indiana University Bloomington), Xiaojiang Du (Stevens Institute of Technology), Qixu Liu (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences), Luyi Xing (Indiana University Bloomington)

Matter is emerging as an IoT industry–unifying standard, aiming to enhance the interoperability among diverse smart home products, enabling them to work securely and seamlessly together. With many popular IoT vendors increasingly supporting Matter in consumer IoT products, we perform a systematic study to investigate how and whether vendors can integrate Matter securely into IoT systems and how well Matter as a standard supports vendors’ secure integration.

By analyzing Matter development model in the wild, we reveal a new kind of design flaw in user-facing Matter control capabilities and interfaces, called UMCCI flaws, which are exploitable vulnerabilities in the design space and seriously jeopardize necessary control and surveillance capabilities of Matter-enabled devices for IoT users. Therefore we built an automatic tool called UMCCI Checker, enhanced by the large-language model in UI analysis, which enables automatically detecting UMCCI flaws without relying on real IoT devices. Our tool assisted us with studying and performing proof-of-concept attacks on 11 real Matter devices of 8 popular vendors to confirm that the UMCCI flaws are practical and common. We reported UMCCI flaws to related vendors, which have been acknowledged by CSA, Apple, Tuya, Aqara, etc. To help CSA and vendors better understand and avoid security flaws in developing and integrating IoT standards like Matter, we identify two categories of root causes and propose immediate fix recommendations.

View More Papers

Privacy-Preserving Data Deduplication for Enhancing Federated Learning of Language...

Aydin Abadi (Newcastle University), Vishnu Asutosh Dasu (Pennsylvania State University), Sumanta Sarkar (University of Warwick)

Read More

Reinforcement Unlearning

Dayong Ye (University of Technology Sydney), Tianqing Zhu (City University of Macau), Congcong Zhu (City University of Macau), Derui Wang (CSIRO’s Data61), Kun Gao (University of Technology Sydney), Zewei Shi (CSIRO’s Data61), Sheng Shen (Torrens University Australia), Wanlei Zhou (City University of Macau), Minhui Xue (CSIRO's Data61)

Read More

Security Advice on Content Filtering and Circumvention for Parents...

Ran Elgedawy (The University of Tennessee, Knoxville), John Sadik (The University of Tennessee, Knoxville), Anuj Gautam (The University of Tennessee, Knoxville), Trinity Bissahoyo (The University of Tennessee, Knoxville), Christopher Childress (The University of Tennessee, Knoxville), Jacob Leonard (The University of Tennessee, Knoxville), Clay Shubert (The University of Tennessee, Knoxville), Scott Ruoti (The University of Tennessee,…

Read More

AegisSat: A Satellite Cybersecurity Testbed

Roee Idan, Roy Peled, Aviel Ben Siman Tov, Eli Markus, Boris Zadov, Ofir Chodeda, Yohai Fadida (Ben Gurion University of the Negev), Oliver Holschke, Jan Plachy (T-Labs (Research & Innovation)), Yuval Elovici, Asaf Shabtai (Ben Gurion University of the Negev)

Read More