Christopher Lentzsch (Ruhr-Universität Bochum), Sheel Jayesh Shah (North Carolina State University), Benjamin Andow (Google), Martin Degeling (Ruhr-Universität Bochum), Anupam Das (North Carolina State University), William Enck (North Carolina State University)

Amazon's voice-based assistant, Alexa, enables users to directly interact with various web services through natural language dialogues. It provides developers with the option to create third-party applications (known as Skills) to run on top of Alexa. While such applications ease users' interaction with smart devices and bolster a number of additional services, they also raise security and privacy concerns due to the personal setting they operate in. This paper aims to perform a systematic analysis of the Alexa skill ecosystem. We perform the first large-scale analysis of Alexa skills, obtained from seven different skill stores totaling to 90,194 unique skills. Our analysis reveals several limitations that exist in the current skill vetting process. We show that not only can a malicious user publish a skill under any arbitrary developer/company name, but she can also make backend code changes after approval to coax users into revealing unwanted information. We, next, formalize the different skill-squatting techniques and evaluate the efficacy of such techniques. We find that while certain approaches are more favorable than others, there is no substantial abuse of skill squatting in the real world. Lastly, we study the prevalence of privacy policies across different categories of skill, and more importantly the policy content of skills that use the Alexa permission model to access sensitive user data. We find that around 23.3% of such skills do not fully disclose the data types associated with the permissions requested. We conclude by providing some suggestions for strengthening the overall ecosystem, and thereby enhance transparency for end-users.

View More Papers

To Err.Is Human: Characterizing the Threat of Unintended URLs...

Beliz Kaleli (Boston University), Brian Kondracki (Stony Brook University), Manuel Egele (Boston University), Nick Nikiforakis (Stony Brook University), Gianluca Stringhini (Boston University)

Read More

PHOENIX: Device-Centric Cellular Network Protocol Monitoring using Runtime Verification

Mitziu Echeverria (The University of Iowa), Zeeshan Ahmed (The University of Iowa), Bincheng Wang (The University of Iowa), M. Fareed Arif (The University of Iowa), Syed Rafiul Hussain (Pennsylvania State University), Omar Chowdhury (The University of Iowa)

Read More

MINOS: A Lightweight Real-Time Cryptojacking Detection System

Faraz Naseem (Florida International University), Ahmet Aris (Florida International University), Leonardo Babun (Florida International University), Ege Tekiner (Florida International University), A. Selcuk Uluagac (Florida International University)

Read More

On Building the Data-Oblivious Virtual Environment

Tushar Jois (Johns Hopkins University), Hyun Bin Lee, Christopher Fletcher, Carl A. Gunter (University of Illinois at Urbana-Champaign)

Read More