Hamid Mozaffari (University of Massachusetts Amherst), Amir Houmansadr (University of Massachusetts Amherst)

Private information retrieval (PIR) enables clients to query and retrieve data from untrusted servers without the untrusted servers learning which data was retrieved.

In this paper, we present a new class of multi-server PIR protocols, which we call emph{heterogeneous PIR (HPIR)}. In such multi-server PIR protocols, the computation and communication overheads imposed on the PIR servers are non-uniform, i.e., some servers handle higher computation/communication burdens than the others. This enables heterogeneous PIR protocols to be suitable for a range of new PIR applications.

What enables us to enforce such heterogeneity is a unique PIR-tailored secret sharing algorithm that we leverage in building our PIR protocol.

We have implemented our HPIR protocol and evaluated its performance in comparison with regular PIR protocols. Our evaluations demonstrate that a querying client can trade off the computation and communication loads of the (heterogeneous) PIR servers by adjusting some parameters. For example in a two server scenario with a heterogeneity degree of $4/1$, to retrieve a $456$KB file from a $0.2$GB database, the rich (i.e., resourceful) PIR server will do $1.1$ seconds worth of computation compared to $0.3$ seconds by the poor (resource-constrained) PIR server; this is while each of the servers would do the same $1$ seconds of computation in a homogeneous settings. Also, for this given example, our HPIR protocol will impose $912$KB communication bandwidth on the rich server compared to $228$KB on the poor server (by contrast to $456$KB overhead on each of the servers for a traditional homogeneous design).

View More Papers

Cross-Origin State Inference (COSI) Attacks: Leaking Web Site States...

Avinash Sudhodanan (IMDEA Software Institute), Soheil Khodayari (CISPA Helmholtz Center for Information Security), Juan Caballero (IMDEA Software Institute)

Read More

DESENSITIZATION: Privacy-Aware and Attack-Preserving Crash Report

Ren Ding (Georgia Institute of Technology), Hong Hu (Georgia Institute of Technology), Wen Xu (Georgia Institute of Technology), Taesoo Kim (Georgia Institute of Technology)

Read More

ConTExT: A Generic Approach for Mitigating Spectre

Michael Schwarz (Graz University of Technology), Moritz Lipp (Graz University of Technology), Claudio Canella (Graz University of Technology), Robert Schilling (Graz University of Technology and Know-Center GmbH), Florian Kargl (Graz University of Technology), Daniel Gruss (Graz University of Technology)

Read More

A View from the Cockpit: Exploring Pilot Reactions to...

Matthew Smith (University of Oxford), Martin Strohmeier (University of Oxford), Jonathan Harman (Vrije Universiteit Amsterdam), Vincent Lenders (armasuisse Science and Technology), Ivan Martinovic (University of Oxford)

Read More