Christian Niesler (University of Duisburg-Essen), Sebastian Surminski (University of Duisburg-Essen), Lucas Davi (University of Duisburg-Essen)

Memory corruption attacks are a pre-dominant attack vector against IoT devices. Simply updating vulnerable IoT software is not always possible due to unacceptable downtime and a required reboot. These side-effects must be avoided for highly-available embedded systems such as medical devices and, generally speaking, for any embedded system with real-time constraints.
To avoid downtime and reboot of a system, previous research has introduced the concept of hotpatching. However, the existing approaches cannot be applied to resource-constrained IoT devices. Furthermore, possible hardware-related issues have not been addressed, i.e., the inability to directly modify the firmware image due to read-only memory.

In this paper, we present the design and implementation of HERA (Hotpatching of Embedded Real-time Applications) which utilizes hardware-based built-in features of commodity Cortex-M microcontrollers to perform hotpatching of embedded systems. HERA preserves hard real-time constraints while keeping the additional resource usage to a minimum. In a case study, we apply HERA to two vulnerable medical devices. Furthermore, we leverage HERA to patch an existing vulnerability in the FreeRTOS operating system. These applications demonstrate the high practicality and efficiency of our approach.

View More Papers

The Bluetooth CYBORG: Analysis of the Full Human-Machine Passkey...

Michael Troncoso (Naval Postgraduate School), Britta Hale (Naval Postgraduate School)

Read More

Measuring DoT/DoH Blocking Using OONI Probe: a Preliminary Study

S. Basso (Open Observatory of Network Interference)

Read More

(Short) Spoofing Mobileye 630’s Video Camera Using a Projector

Ben Nassi, Dudi Nassi, Raz Ben Netanel and Yuval Elovici (Ben-Gurion University of the Negev)

Read More

Towards Understanding and Detecting Cyberbullying in Real-world Images

Nishant Vishwamitra (University at Buffalo), Hongxin Hu (University at Buffalo), Feng Luo (Clemson University), Long Cheng (Clemson University)

Read More