Sarisht Wadhwa (Duke University), Jannis Stoeter (Duke University), Fan Zhang (Duke University, Yale University), Kartik Nayak (Duke University)

Hashed Time-Locked Contracts (HTLCs) are a widely used primitive in blockchain systems such as payment channels, atomic swaps, etc. Unfortunately, HTLC is incentive-incompatible and is vulnerable to bribery attacks. The state-of-the-art solution is MAD-HTLC (Oakland'21), which proposes an elegant idea that leverages miners' profit-driven nature to defeat bribery attacks.

In this paper, we show that MAD-HTLC is still vulnerable as it only considers a somewhat narrow set of passive strategies by miners. Through a family of novel reverse-bribery attacks, we show concrete active strategies that miners can take to break MAD-HTLC and profit at the loss of MAD-HTLC users. For these attacks, we present their implementation and game-theoretical profitability analysis.

Based on the learnings from our attacks, we propose a new HTLC realization, He-HTLC (Our specification is lightweight and inert to incentive manipulation attacks. Hence, we call it He-HTLC where He stands for Helium.) that is provably secure against all possible strategic manipulation (passive and active). In addition to being secure in a stronger adversary model, He-HTLC achieves other desirable features such as low and user-adjustable collateral, making it more practical to implement and use the proposed schemes. We implemented He-HTLC on Bitcoin and the transaction cost of He-HTLC is comparative to average Bitcoin transaction fees.

View More Papers

Automatic Retrieval of Privacy Factors from IoMT Policies: ML...

Nyteisha Bookert, Mohd Anwar (North Carolina Agricultural and Technical State University)

Read More

BinaryInferno: A Semantic-Driven Approach to Field Inference for Binary...

Jared Chandler (Tufts University), Adam Wick (Fastly), Kathleen Fisher (DARPA)

Read More

Brokenwire: Wireless Disruption of CCS Electric Vehicle Charging

Sebastian Köhler (University of Oxford), Richard Baker (University of Oxford), Martin Strohmeier (armasuisse Science + Technology), Ivan Martinovic (University of Oxford)

Read More

Evaluations of Cyberattacks on Cooperative Control of Connected and...

H M Sabbir Ahmad (Boston University), Ehsan Sabouni (Boston University), Wei Xiao (Massachusetts Institute of Technology), Christos G. Cassandras (Boston University), Wenchao Li (Boston University)

Read More